Supplement to the paper "Asymptotic cumulants of the estimator of the canonical parameter in the exponential family"

Haruhiko Ogasawara

This article is to supplement Ogasawara (2013) with proofs, examples and a correction.

A. 1 Proof of Theorem 1

From (4.1),

$$
\begin{aligned}
\kappa_{1}\left(\hat{\theta}_{\mathrm{ML}}-\theta_{0}\right) & =-\frac{n^{-1}}{2} i_{0}^{-3} i_{0}^{(\mathrm{D})} i_{0}+O\left(n^{-2}\right)=-\frac{n^{-1}}{2} i_{0}^{-2} i_{0}^{(\mathrm{D} 1)}+O\left(n^{-2}\right) \\
& =-\frac{n^{-1}}{2}\{\operatorname{var}(s)\}^{-1 / 2} \operatorname{sk}(s)+O\left(n^{-2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\kappa_{2}\left(\hat{\theta}_{\mathrm{ML}}\right)= & n^{-1} i_{0}^{-1}+n^{-2}\left[\frac{1}{2} i_{0}^{-6}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2} i_{0}^{2}-i_{0}^{-4} i_{0}^{(\mathrm{Dl})} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{3}\right\}\right. \\
& \left.+2\left\{\frac{1}{2} i_{0}^{-5}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}-\frac{1}{6} i_{0}^{-4} i_{0}^{(\mathrm{D} 2)}\right\} i_{0}^{-1} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{4}\right\}\right]+O\left(n^{-3}\right) \\
= & n^{-1} i_{0}^{-1}+n^{-2}\left\{\frac{5}{2} i_{0}^{-4}\left(i_{0}^{(\mathrm{D})}\right)^{2}-i_{0}^{-3} i_{0}^{(\mathrm{D} 2)}\right\}+O\left(n^{-3}\right), \\
= & n^{-1}\{\operatorname{var}(s)\}^{-1}+n^{-2}\{\operatorname{var}(s)\}^{-1}\left[\frac{5}{2}\{\operatorname{sk}(s)\}^{2}-\mathrm{kt}(s)\right]+O\left(n^{-3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{3}\left(\hat{\theta}_{\mathrm{ML}}\right)=n^{-2}\left[i_{0}^{-3} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{3}\right\}-\frac{3}{2}\left(i_{0}^{-1}\right)^{2} i_{0}^{-3} i_{0}^{(\mathrm{D} 1)} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{4}\right\}-3 \alpha_{\mathrm{ML} 1} \alpha_{\mathrm{ML} 2}\right] \\
& +O\left(n^{-3}\right) \\
& =n^{-2}\left(1-\frac{9}{2}+\frac{3}{2}\right) i_{0}^{-3} i_{0}^{(\mathrm{Dl})}+O\left(n^{-3}\right) \\
& =-n^{-2} 2\{\operatorname{var}(s)\}^{-3 / 2} \operatorname{sk}(s)+O\left(n^{-3}\right) \text {, } \\
& \kappa_{4}\left(\hat{\theta}_{\mathrm{ML}}\right)=n^{-3}\left[\left(i_{0}^{-1}\right)^{4} \kappa_{4}(s)+4\left(i_{0}^{-1}\right)^{3}\left\{-\frac{1}{2} i_{0}^{-3} i_{0}^{(\mathrm{D} 1)} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{5}\right\}\right\}\right. \\
& +6\left(i_{0}^{-1}\right)^{2}\left\{-\frac{1}{2} i_{0}^{-3} i_{0}^{(\mathrm{D} 1)}\right\}^{2} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{6}\right\} \\
& +4\left(i_{0}^{-1}\right)^{3}\left\{\frac{1}{2} i_{0}^{-5}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}-\frac{1}{6} i_{0}^{-4} i_{0}^{(\mathrm{D} 2)}\right\} \mathrm{E}\left\{\left(s-\eta_{0}\right)^{6}\right\} \\
& \left.-4 \alpha_{\mathrm{ML} 1} \alpha_{\mathrm{ML} 3}-6 \alpha_{\mathrm{ML} 2} \alpha_{\mathrm{ML} \Delta 2}-6 \alpha_{\mathrm{ML} 2} \alpha_{\mathrm{ML} 1}^{2}\right]+O\left(n^{-4}\right) \\
& =n^{-3}\left[\left(i_{0}^{-1}\right)^{4} i_{0}^{(\mathrm{D} 2)}-20 i_{0}^{-6} i_{0}^{(\mathrm{D} 1)}\left(i_{0} i_{0}^{(\mathrm{D} 1)}\right)+\frac{45}{2}\left(i_{0}^{-1}\right)^{8}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2} i_{0}^{3}\right. \\
& +\left(30 i_{0}^{-8}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}-10 i_{0}^{-7} i_{0}^{(\mathrm{D} 2)}\right) i_{0}^{3}-4\left(-\frac{1}{2} i_{0}^{-2} i_{0}^{(\mathrm{D} 1)}\right)\left(-2 i_{0}^{-3} i_{0}^{(\mathrm{D} 1)}\right) \\
& \left.-6 i_{0}^{-1}\left\{\frac{5}{2} i_{0}^{-4}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}-i_{0}^{-3} i_{0}^{(\mathrm{D} 2)}\right\}-6 i_{0}^{-1}\left(-\frac{1}{2} i_{0}^{-2} i_{0}^{(\mathrm{D} 1)}\right)^{2}\right]+O\left(n^{-4}\right) \\
& =n^{-3}\left\{12 i_{0}^{-5}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}-3 i_{0}^{-4} i_{0}^{(\mathrm{D} 2)}\right\}+O\left(n^{-4}\right) \\
& =n^{-3}\{\operatorname{var}(s)\}^{-2}\left[12\{\operatorname{sk}(s)\}^{2}-3 \mathrm{kt}(s)\right]+O\left(n^{-4}\right) \text {. }
\end{aligned}
$$

The above results are also given from (3.1) to (3.4).

A. 2 Proof of Theorem 2

Expand $\hat{i}^{1 / 2}$ about $i_{0}^{1 / 2}$ as

$$
\begin{aligned}
\hat{i}^{1 / 2}= & i_{0}^{1 / 2}+\frac{1}{2} i_{0}^{-1 / 2} i_{0}^{(\mathrm{D} 1)}\left(\hat{\theta}_{\mathrm{ML}}-\theta_{0}\right)+\left\{\frac{1}{4} i_{0}^{-1 / 2} i_{0}^{(\mathrm{D} 2)}-\frac{1}{8} i_{0}^{-3 / 2}\left(i_{0}^{(\mathrm{Dl})}\right)^{2}\right\}\left(\hat{\theta}_{\mathrm{ML}}-\theta_{0}\right)^{2} \\
& +O_{p}\left(n^{-2}\right) \\
= & i_{0}^{1 / 2}+\frac{1}{2} i_{0}^{-1 / 2} i_{0}^{(\mathrm{D} 1)}\left\{i_{0}^{-1}\left(\hat{\eta}-\eta_{0}\right)\right\}+\frac{1}{2} i_{0}^{-1 / 2} i_{0}^{(\mathrm{D} 1)}\left\{-\frac{1}{2} i_{0}^{-3} i_{0}^{(\mathrm{D} 1)}\left(\hat{\eta}-\eta_{0}\right)^{2}\right\} \\
& +\left\{\frac{1}{4} i_{0}^{-1 / 2} i_{0}^{(\mathrm{D} 2)}-\frac{1}{8} i_{0}^{-3 / 2}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}\right\}\left\{i_{0}^{-1}\left(\hat{\eta}-\eta_{0}\right)\right\}^{2}+O_{p}\left(n^{-3 / 2}\right) \\
= & i_{0}^{1 / 2}+\frac{1}{2} i_{0}^{-3 / 2} i_{0}^{(\mathrm{D} 1)}\left(\hat{\eta}-\eta_{0}\right)+\left\{\frac{1}{4} i_{0}^{-5 / 2} i_{0}^{(\mathrm{D} 2)}-\frac{3}{8} i_{0}^{-7 / 2}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}\right\}\left(\hat{\eta}-\eta_{0}\right)^{2} \\
& +O_{p}\left(n^{-3 / 2}\right) \\
\equiv & i_{0}^{1 / 2}+i_{0}^{(t 1)}\left(\hat{\eta}-\eta_{0}\right)+i_{0}^{(t 2)}\left(\hat{\eta}-\eta_{0}\right)^{2}+O_{p}\left(n^{-3 / 2}\right) \\
= & i_{0}^{1 / 2}+i_{0}^{(t 1)} l_{0}^{(1)}+i_{0}^{(t 2)} l_{0}^{(2)}+O_{p}\left(n^{-3 / 2}\right) .
\end{aligned}
$$

Then, using (4.1) we have

$$
\begin{aligned}
t= & n^{1 / 2}\left\{\sum_{j=1}^{3} \lambda^{(j)} l_{0}^{(j)}+O_{p}\left(n^{-2}\right)\right\}\left(i_{0}^{1 / 2}+i_{0}^{(t 1)} l_{0}^{(1)}+i_{0}^{(t 2)} l_{0}^{(2)}+O_{p}\left(n^{-3 / 2}\right)\right) \\
= & n^{1 / 2}\left\{\lambda^{(1)} l_{0}^{(1)} i_{0}^{1 / 2}+\left(\lambda^{(2)} l_{0}^{(2)} i_{0}^{1 / 2}+\lambda^{(1)} l_{0}^{(1)} i_{0}^{(t 1)} l_{0}^{(1)}\right)\right. \\
& \left.+\left(\lambda^{(3)} l_{0}^{(3)} i_{0}^{1 / 2}+\lambda^{(2)} l_{0}^{(2)} i_{0}^{(t 1)} l_{0}^{(1)}+\lambda^{(1)} l_{0}^{(1)} i_{0}^{(t 2)} l_{0}^{(2)}\right)\right\}+O_{p}\left(n^{-3 / 2}\right) \\
\equiv & n^{1 / 2}\left(\lambda^{(t 1)} l_{0}^{(1)}+\lambda^{(t 2)} l_{0}^{(2)}+\lambda^{(t 3)} l_{0}^{(3)}\right)+O_{p}\left(n^{-3 / 2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda^{(t 1)} l_{0}^{(1)} & =i_{0}^{-1 / 2}\left(\hat{\eta}-\eta_{0}\right) \\
\lambda^{(t 2)} l_{0}^{(2)} & =\lambda^{(2)} i_{0}^{1 / 2} l_{0}^{(2)}+\lambda^{(1)} i_{0}^{(t 1)}\left(l_{0}^{(1)}\right)^{2} \\
& =\left(-\frac{1}{2} i_{0}^{-5 / 2} i_{0}^{(\mathrm{D} 1)}+\frac{1}{2} i_{0}^{-5 / 2} i_{0}^{(\mathrm{D} 1)}\right)\left(\hat{\eta}-\eta_{0}\right)^{2} \\
& =0, \\
\lambda^{(t 3)} l_{0}^{(3)} & =\left[\frac{1}{2} i_{0}^{-9 / 2}\left(i_{0}^{(\mathrm{DL})}\right)^{2}-\frac{1}{6} i_{0}^{-7 / 2} i_{0}^{(\mathrm{D} 2)}+\left(-\frac{1}{2} i_{0}^{-3} i_{0}^{(\mathrm{D} 1)}\right)\left(\frac{1}{2} i_{0}^{-3 / 2} i_{0}^{(\mathrm{D} 1)}\right)\right. \\
& \left.+\frac{1}{4} i_{0}^{-7 / 2} i_{0}^{(\mathrm{D} 2)}-\frac{3}{8} i_{0}^{-9 / 2}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}\right]\left(\hat{\eta}-\eta_{0}\right)^{3} \\
& =\left\{-\frac{1}{8} i_{0}^{-9 / 2}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}+\frac{1}{12} i_{0}^{-7 / 2} i_{0}^{(\mathrm{D} 2)}\right\}\left(\hat{\eta}-\eta_{0}\right)^{3} .
\end{aligned}
$$

Note that $\lambda^{(t 2)} l_{0}^{(2)}=0$. Then, from the above results,

$$
\begin{aligned}
\kappa_{1}(t) & =O\left(n^{-3 / 2}\right), \\
\kappa_{2}(t) & =1+n^{-1} 2 \lambda^{(t 1)} \lambda^{(t 3)} \mathrm{E}\left(n^{2} l_{0}^{(1)} l_{0}^{(3)}\right)+O\left(n^{-2}\right) \\
& =1+n^{-1}\left\{-\frac{1}{4} i_{0}^{-5}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}+\frac{1}{6} i_{0}^{-4} i_{0}^{(\mathrm{D} 2)}\right\} 3 i_{0}^{2}+O\left(n^{-2}\right) \\
& =1+n^{-1}\left\{-\frac{3}{4} i_{0}^{-3}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}+\frac{1}{2} i_{0}^{-2} i_{0}^{(\mathrm{D} 2)}\right\}+O\left(n^{-2}\right) \\
& =1+n^{-1}\left[-\frac{3}{4}\{\operatorname{sk}(s)\}^{2}+\frac{1}{2} \mathrm{ks}(s)\right]+O\left(n^{-2}\right),
\end{aligned}
$$

$$
\begin{aligned}
\kappa_{3}(t)= & n^{-1 / 2} i_{0}^{-3 / 2} \mathrm{E}\left\{n^{2}\left(\hat{\eta}-\eta_{0}\right)^{3}\right\}+O\left(n^{-3 / 2}\right) \\
& =n^{-1 / 2} \operatorname{sk}(s)+O\left(n^{-3 / 2}\right), \\
\kappa_{4}(t)= & \mathrm{E}\left(t^{4}\right)-3-n^{-1} 6 \alpha_{\mathrm{ML} \Delta 2}^{(t)}+O\left(n^{-2}\right) \\
= & n^{-1}\left[\mathrm{E}\left\{n^{3}\left(\lambda^{(t 1)} l_{0}^{(1)}\right)^{4}\right\}-3 n+4 \mathrm{E}\left\{n^{3}\left(\lambda^{(t 1)} l_{0}^{(1)}\right)^{3} \lambda^{(t 3)} l_{0}^{(3)}\right\}-6 \alpha_{\mathrm{ML} \Delta 2}^{(t)}\right] \\
& +O\left(n^{-2}\right) \\
= & n^{-1}\left[i_{0}^{-2} \mathrm{E}\left\{n^{2}\left(\hat{\eta}-\eta_{0}\right)^{4}\right\}-3 n\right. \\
& \left.+4\left\{-\frac{1}{8} i_{0}^{-9 / 2}\left(i_{0}^{(\mathrm{D} 1)}\right)^{2}+\frac{1}{12} i_{0}^{-7 / 2} i_{0}^{(\mathrm{D} 2)}\right\} i_{0}^{-3 / 2} \mathrm{E}\left\{n^{3}\left(\hat{\eta}-\eta_{0}\right)^{6}\right\}-6 \alpha_{\mathrm{ML} \Delta 2}^{(t)}\right] \\
& +O\left(n^{-2}\right) \\
= & n^{-1}\left[\mathrm{kt}(s)+\left\{-\frac{15}{2}\{\operatorname{sk}(s)\}^{2}+5 \mathrm{kt}(s)\right\}-6\left\{-\frac{3}{4}\{\operatorname{sk}(s)\}^{2}+\frac{1}{2} \mathrm{kt}(s)\right\}\right] \\
& +O\left(n^{-2}\right) \\
= & n^{-1}\left[-3\{\operatorname{sk}(s)\}^{2}+3 \mathrm{kt}(s)\right]+O\left(n^{-2}\right) .
\end{aligned}
$$

A. 3 Derivation of the results in Table 1 and examples

A relationship between $\alpha_{\mathrm{JM} \Delta 2}$ and $\alpha_{\mathrm{ML} \Delta 2}$ is given by
Theorem 3. A Bayes modal estimator $\hat{\theta}_{\mathrm{JM}}$ using the Jeffreys prior for a canonical parameter in the exponential family gives

$$
\begin{equation*}
\alpha_{\mathrm{JM} \Delta 2} \leq(>) \alpha_{\mathrm{ML} \Delta 2} \text { when } \mathrm{k} / \mathrm{ss} \leq(>) 2 \tag{A1}
\end{equation*}
$$

Proof. From (5.10), the inequalities (A1) hold when

$$
\begin{align*}
-2 n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right) & =-2 i_{0}^{-4}\left(i_{0}^{(\mathrm{Dl})}\right)^{2}+i_{0}^{-3} i_{0}^{(\mathrm{D} 2)} \\
& =i_{0}^{-1}\left[-2\{\operatorname{sk}(s)\}^{2}+\mathrm{kt}(s)\right] \leq(>) 0, \tag{A2}
\end{align*}
$$

which gives (A1). Q.E.D.
Theorem 3 indicates that when $\mathrm{kt}(s)$ is smaller than $2\{\operatorname{sk}(s)\}^{2}$, not only the bias of order $O\left(n^{-1}\right)$ for $\hat{\theta}_{\mathrm{JM}}$ vanishes, but also the variance up to
order $O\left(n^{-2}\right)$ is smaller than that of $\hat{\theta}_{\mathrm{ML}}$.
Theorem 4. The mean square error of $\hat{\theta}_{\mathrm{JM}}$ up to order $O\left(n^{-2}\right)$ is smaller than or equal to (greater than) that of $\hat{\theta}_{\mathrm{ML}}$ when

$$
\begin{equation*}
\mathrm{k} / \mathrm{ss} \leq(>) \frac{9}{4} \tag{A3}
\end{equation*}
$$

Proof. Since $\alpha_{\mathrm{JM} 1}=0$, the mean square error of $\hat{\theta}_{\mathrm{JM}}$ up to order $O\left(n^{-2}\right)$ denoted by $\operatorname{MSE}_{O\left(n^{-2}\right)}(\cdot)$ is equal to the higher-order asymptotic variance up to order $O\left(n^{-2}\right)$ i.e.,

$$
\begin{align*}
\operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{JM}}\right) & =n^{-1} i_{0}^{-1}+n^{-2} \alpha_{\mathrm{JM} \Delta 2} \\
& =n^{-1}\{\operatorname{var}(s)\}^{-1}+\frac{n^{-2}}{2}\{\operatorname{var}(s)\}^{-1}\{\operatorname{sk}(s)\}^{2} \tag{A4}
\end{align*}
$$

while

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{ML}}\right)=n^{-1} i_{0}^{-1}+n^{-2}\left(\alpha_{\mathrm{ML} 1}^{2}+\alpha_{\mathrm{ML} \Delta 2}\right) \\
& =n^{-1}\{\operatorname{var}(s)\}^{-1}+n^{-2}\{\operatorname{var}(s)\}^{-1}\left[\frac{1}{4}\{\operatorname{sk}(s)\}^{2}+\frac{5}{2}\{\operatorname{sk}(s)\}^{2}-\operatorname{kt}(s)\right] \tag{A5}\\
& =n^{-1}\{\operatorname{var}(s)\}^{-1}+n^{-2}\{\operatorname{var}(s)\}^{-1}\left[\frac{11}{4}\{\operatorname{sk}(s)\}^{2}-\operatorname{kt}(s)\right]
\end{align*}
$$

(see (4.2)), which gives (A3). Q.E.D.
Example 1. Bernoulli distribution. The single population canonical parameter (logit) is $\theta_{0}=\log \left\{\pi_{0} /\left(1-\pi_{0}\right)\right\}\left(\pi_{0} \neq 0,1\right)$, where $s=s(X)=X, \operatorname{Pr}(X=1)=\pi_{0}$, $\operatorname{Pr}(X=0)=1-\pi_{0}, i_{0}=\pi_{0}\left(1-\pi_{0}\right), \kappa_{3}(s)=\left(1-2 \pi_{0}\right) \pi_{0}\left(1-\pi_{0}\right)$ and $\kappa_{4}(s)=\left(1-6 \pi_{0}+6 \pi_{0}^{2}\right) \pi_{0}\left(1-\pi_{0}\right)$. Then, $\alpha_{\mathrm{ML} 1}=-\frac{i_{0}^{-2}}{2} \kappa_{3}(s)=-\frac{1-2 \pi_{0}}{2 \pi_{0}\left(1-\pi_{0}\right)}, \quad \operatorname{sk}(s)=\frac{1-2 \pi_{0}}{\left\{\pi_{0}\left(1-\pi_{0}\right)\right\}^{1 / 2}}$ and $\operatorname{kt}(s)=\frac{1-6 \pi_{0}+6 \pi_{0}^{2}}{\pi_{0}\left(1-\pi_{0}\right)}$, which give

$$
\begin{equation*}
\mathrm{k} / \mathrm{ss} \text { of } s=\frac{1-6 \pi_{0}+6 \pi_{0}^{2}}{\left(1-2 \pi_{0}\right)^{2}}=1-\frac{2 \pi_{0}\left(1-\pi_{0}\right)}{\left(1-2 \pi_{0}\right)^{2}}<1\left(\pi_{0} \neq 0,0.5,1\right) \tag{A6}
\end{equation*}
$$

belonging to Area A in Table 1 with advantages for $\hat{\theta}_{\mathrm{JM}}$ over $\hat{\theta}_{\mathrm{ML}}$.
Example 2. Poisson distribution. The single population canonical parameter is given by $\theta_{0}=\log \lambda$, where λ is the source parameter i.e.,

$$
\begin{aligned}
& \operatorname{Pr}(X=x)=\exp \left(-e^{\theta_{0}}\right) e^{\theta_{0} x} / x!=\exp \left(\theta_{0} x-e^{\theta_{0}}\right) / x!\left(e^{\theta_{0}}=\lambda\right) \\
& \quad(x=0,1, \ldots), \\
& s=s(X)=X, \mathrm{E}(X)=\operatorname{var}(X)=\kappa_{3}(X)=\kappa_{4}(X)=e^{\theta_{0}}=\lambda \\
& i_{0}=\left(\partial \lambda / \partial \theta_{0}\right)^{2} \lambda^{-1}=\lambda=e^{\theta_{0}}
\end{aligned}
$$

which give

$$
\begin{equation*}
\alpha_{\mathrm{ML} 1}=-\frac{e^{-\theta_{0}}}{2}, \operatorname{sk}(s)=\frac{e^{\theta_{0}}}{\left(e^{\theta_{0}}\right)^{3 / 2}}=e^{-\theta_{0} / 2}, \operatorname{kt}(s)=\frac{e^{\theta_{0}}}{\left(e^{\theta_{0}}\right)^{2}}=e^{-\theta_{0}} \tag{A7}
\end{equation*}
$$

and k / ss of $s=e^{-\theta_{0}} / e^{-\theta_{0}}=1$,
where the k / ss ratio does not depend on θ_{0} and belongs to advantageous Area A in Table 1 for $\hat{\theta}_{\mathrm{JM}}$.

Example 3. Gamma distribution with known shape parameter. The density function using the source parameter is $f(X=x \mid \lambda, \gamma)=\frac{x^{\gamma-1} e^{-x / \lambda}}{\Gamma(\gamma) \lambda^{\gamma}}$, where γ is assumed to be known. The single population canonical parameter (negative rate) is $\theta_{0}=-1 / \lambda$, which gives
$f\left(X=x \mid \theta_{0}, \gamma\right)=x^{\gamma-1}\left(-\theta_{0}\right)^{\gamma} e^{x \theta_{0}} / \Gamma(\gamma)$ and $a\left(\theta_{0}\right)=-\gamma \log \left(-\theta_{0}\right)$. Then, $s=s(X)=X, \mathrm{E}(X)=\partial a\left(\theta_{0}\right) / \partial \theta_{0}=-\gamma / \theta_{0}$,
$i_{0}=\operatorname{var}(X)=\gamma / \theta_{0}^{2}, \kappa_{3}(X)=-2 \gamma / \theta_{0}^{3}$ and $\kappa_{4}(X)=6 \gamma / \theta_{0}^{4}$, which give

$$
\alpha_{\mathrm{ML} 1}=\gamma^{-1} \theta_{0}, \operatorname{sk}(s)=-\frac{2 \gamma / \theta_{0}^{3}}{\left(\gamma / \theta_{0}^{2}\right)^{3 / 2}}=-2 \gamma^{-1 / 2}, \mathrm{kt}(s)=\frac{6 \gamma / \theta_{0}^{4}}{\left(\gamma / \theta_{0}^{2}\right)^{2}}=6 \gamma^{-1} \text { and }
$$

k / ss of $s=\frac{6 \gamma^{-1}}{4 \gamma^{-1}}=\frac{3}{2}$,
where the k / ss ratio again does not depend on θ_{0} and belongs to Area A in Table 1.

A. 4 Bias adjustment reducing the mean square error

Define

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{\mathrm{C}(k)}=\hat{\boldsymbol{\theta}}_{\mathrm{ML}}-n^{-1} k \hat{\boldsymbol{\alpha}}_{\mathrm{ML} 1}, \tag{A9}
\end{equation*}
$$

where k is a constant. When $k=1$, (A9) gives the familiar bias-corrected estimator. Note that (A9) is a special case of

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{\mathrm{C}} \equiv \hat{\boldsymbol{\theta}}_{\mathrm{ML}}+n^{-1} \hat{\mathbf{I}}^{-1} \hat{\mathbf{q}}^{*} \tag{A10}
\end{equation*}
$$

when $\hat{\mathbf{q}}^{*}=-k \hat{\mathbf{I}} \hat{\boldsymbol{\alpha}}_{\mathrm{ML} 1}$. Then, from (5.3) and $\hat{\boldsymbol{\theta}}_{\mathrm{ML}}-\boldsymbol{\theta}_{0}=\sum_{j=1}^{3} \mathbf{\Lambda}^{(j)} \mathbf{l}_{0}^{(j)}+O_{p}\left(n^{-1}\right)$, we have

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{\mathrm{C}}=\hat{\boldsymbol{\theta}}_{\mathrm{w}}+O_{p}\left(n^{-2}\right) . \tag{A11}
\end{equation*}
$$

From (5.4) and (A11), $\boldsymbol{\alpha}_{\mathrm{C} 1}$ and $\mathbf{A}_{\mathrm{C} \Delta 2}$ in $\kappa_{1}\left(\hat{\boldsymbol{\theta}}_{\mathrm{C}}\right)$ and $\kappa_{2}\left(\hat{\boldsymbol{\theta}}_{\mathrm{C}}\right)$, defined similarly to $\boldsymbol{\alpha}_{\mathrm{w} 1}$ and $\mathbf{A}_{\mathrm{W} \Delta 2}$ in $\kappa_{1}\left(\hat{\boldsymbol{\theta}}_{\mathrm{w}}\right)$ and $\kappa_{2}\left(\hat{\boldsymbol{\theta}}_{\mathrm{w}}\right)$, respectively, are found to be

$$
\begin{equation*}
\boldsymbol{\alpha}_{\mathrm{C} 1}=\boldsymbol{\alpha}_{\mathrm{W} 1} \text { and } \mathbf{A}_{\mathrm{C} \Delta 2}=\mathbf{A}_{\mathrm{W} \Delta 2} \text { with } \boldsymbol{\alpha}_{\mathrm{C} j}=\boldsymbol{\alpha}_{\mathrm{ML} j}(j=2,3,4), \tag{A12}
\end{equation*}
$$

where $\boldsymbol{\alpha}_{\mathrm{C} j}(j=2,3,4)$ are defined similarly.
In the case of the canonical parameter, (A11) gives

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{\mathrm{C}(1)}=\hat{\boldsymbol{\theta}}_{\mathrm{ML}}-n^{-1} \hat{\boldsymbol{\alpha}}_{\mathrm{ML} 1}=\hat{\boldsymbol{\theta}}_{\mathrm{JM}}+O_{p}\left(n^{-2}\right) . \tag{A13}
\end{equation*}
$$

That is, the estimator asymptotically equal to the Jeffreys Bayes modal estimator $\left(\hat{\mathbf{q}}^{*}=-\hat{\mathbf{I}} \hat{\boldsymbol{\alpha}}_{\text {ML1 }}\right)$ up to order $O_{p}\left(n^{-3 / 2}\right)$ is also obtained by bias-correction of $\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$. A scalar version of (A9) is

$$
\begin{equation*}
\hat{\theta}_{\mathrm{C}(k)}=\hat{\theta}_{\mathrm{ML}}-n^{-1} k \hat{\alpha}_{\mathrm{ML} 1}, \tag{A14}
\end{equation*}
$$

whose $\mathrm{MSE}_{O\left(n^{-2}\right)}$ is

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}(k)}\right) \\
& =n^{-1} i_{0}^{-1}+n^{-2}\left\{\alpha_{\mathrm{ML} \Delta 2}+(1-k)^{2} \alpha_{\mathrm{ML} 1}^{2}-2 k n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)\right\}^{\prime} \tag{A15}
\end{align*}
$$

which is minimized when k is

$$
\begin{equation*}
k_{\min } \equiv 1+\alpha_{\mathrm{ML1}}^{-2} n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right) \tag{A16}
\end{equation*}
$$

and

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}\right)=n^{-1} i_{0}^{-1}+n^{-2}\left\{\alpha_{\mathrm{ML} \Delta 2}+\alpha_{\mathrm{ML} 1}^{2}\left(1-k_{\min }^{2}\right)\right\} \\
& =n^{-1} i_{0}^{-1}+n^{-2}\left[\alpha_{\mathrm{ML} \Delta 2}-2 n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)-\alpha_{\mathrm{ML}}^{-2}\left\{n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)\right\}^{2}\right] \tag{A17}
\end{align*}
$$ where (A16) and (A17) were given by Ogasawara (2014). From the above results,

Theorem 5. For a scalar canonical parameter, a constant for bias adjustment minimizing the MSE up to order $O\left(n^{-2}\right)$ in (A15) is given by

$$
\begin{equation*}
k_{\min }=5-2 \frac{\mathrm{kt}(s)}{\{\operatorname{sk}(s)\}^{2}} \tag{A18}
\end{equation*}
$$

which yields

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}\right)=n^{-1}\{\operatorname{var}(s)\}^{-1} \\
& \quad+n^{-2}\{\operatorname{var}(s)\}^{-1}\{\operatorname{sk}(s)\}^{2}\left[-\frac{\{\mathrm{kt}(s)\}^{2}}{\{\operatorname{sk}(s)\}^{4}}+4 \frac{\mathrm{kt}(s)}{\{\operatorname{sk}(s)\}^{2}}-\frac{7}{2}\right] . \tag{A19}
\end{align*}
$$

Proof. Using (4.2) and (5.10), (A16) and (A17) become

$$
\begin{equation*}
k_{\min }=1+\left[-\frac{1}{2}\{\operatorname{var}(s)\}^{-1 / 2} \operatorname{sk}(s)\right]^{-2}\{\operatorname{var}(s)\}^{-1}\left[\{\operatorname{sk}(s)\}^{2}-\frac{1}{2} \mathrm{kt}(s)\right] \tag{A20}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\text {min }}\right)}\right)= & n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[\frac{5}{2}\{\operatorname{sk}(s)\}^{2}-\{\mathrm{kt}(s)\}\right. \\
& \left.+\left\{-\frac{1}{2} \operatorname{sk}(s)\right\}^{2}\left(1-\left\{5-2 \frac{\mathrm{kt}(s)}{\{\operatorname{sk}(s)\}^{2}}\right\}^{2}\right)\right], \tag{A21}
\end{align*}
$$

which give (A18) and (A19), respectively. Q.E.D.
It is found that $k_{\text {min }}$ in (A18) depends only on the k / ss ratio.
Correction 1. In Result 2 of Ogasawara (2013), the incorrect equation $k_{\text {min }}=5-(\mathrm{k} / \mathrm{ss})$ due to a typographical error should be $k_{\min }=5-2(\mathrm{k} / \mathrm{ss})$ as in Theorem 5.

Example 1 (continued). Bernoulli distribution. The result in this continued example without using the k / ss ratio is known (Ogasawara, 2014), but is repeated here using the ratio. From (A6) and (A18),

$$
\begin{align*}
k_{\min } & =5-2 \frac{\mathrm{kt}(s)}{\{\operatorname{sk}(s)\}^{2}}=5-2\left\{1-\frac{2 \pi_{0}\left(1-\pi_{0}\right)}{\left(1-2 \pi_{0}\right)^{2}}\right\} \\
& =3+\frac{4 \pi_{0}\left(1-\pi_{0}\right)}{\left(1-2 \pi_{0}\right)^{2}}>3\left(\pi_{0} \neq 0,0.5,1\right) \tag{A22}
\end{align*}
$$

where $k_{\min }$ depends on π_{0}, but 3 is a lower bound of practical use. That is, when $k=3$, from (A17), (A19), $\alpha_{\mathrm{ML} 1}=\frac{1}{2}\left(-\frac{1}{\pi_{0}}+\frac{1}{1-\pi_{0}}\right)$ (see (A6)) and

$$
\begin{aligned}
& n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)=\frac{\operatorname{var}(s)}{\pi_{0}\left(1-\pi_{0}\right)} \frac{1}{2}\left(\frac{1}{\pi_{0}^{2}}+\frac{1}{\left(1-\pi_{0}\right)^{2}}\right) \\
& =\frac{1}{4}\left(\frac{\{\operatorname{sk}(s)\}^{2}}{\operatorname{var}(s)}+\frac{1}{\{\operatorname{var}(s)\}^{2}}\right), \text { we have }
\end{aligned}
$$

$$
\operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}(3)}\right)=n^{-1} i_{0}^{-1}+n^{-2}\left\{\alpha_{\mathrm{ML} \Delta 2}+4 \alpha_{\mathrm{ML} 1}^{2}-6 n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)\right\}
$$

$$
=n^{-1} i_{0}^{-1}
$$

$$
+n^{-2} i_{0}^{-1}\left[\frac{5}{2}\{\operatorname{sk}(s)\}^{2}-\operatorname{kt}(s)+4\left\{-\frac{\operatorname{sk}(s)}{2}\right\}^{2}-\frac{3}{2}\left\{\{\operatorname{sk}(s)\}^{2}+\frac{1}{\operatorname{var}(s)}\right\}\right]
$$

$$
=n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[2\{\operatorname{sk}(s)\}^{2}-\operatorname{kt}(s)-(3 / 2)\{\operatorname{var}(s)\}^{-1}\right]
$$

$$
=n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[\{\operatorname{sk}(s)\}^{2}+2-(3 / 2)\{\operatorname{var}(s)\}^{-1}\right]
$$

$$
=n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[(1 / 2)\{\operatorname{sk}(s)\}^{2}-\{\operatorname{var}(s)\}^{-1}\right]
$$

$$
=n^{-1}\left\{\pi_{0}\left(1-\pi_{0}\right)\right\}^{-1}+n^{-2}\left\{\pi_{0}\left(1-\pi_{0}\right)\right\}^{-2}(1 / 2)\left\{\left(1-2 \pi_{0}\right)^{2}-2\right\}
$$

(note that $\operatorname{kt}(s)=\{\operatorname{sk}(s)\}^{2}-2$ in this case), which is smaller than that of $\hat{\theta}_{\mathrm{ML}}$ by $-3 \alpha_{\mathrm{ML} 1}^{2}+6 n \operatorname{acov}\left(\hat{\theta}_{\mathrm{ML}}, \hat{\alpha}_{\mathrm{ML} 1}\right)$
$=\frac{3\{\operatorname{sk}(s)\}^{2}}{4 \operatorname{var}(s)}+\frac{3}{2\{\operatorname{var}(s)\}^{2}}=\frac{3\left(1-2 \pi_{0}\right)^{2}+6}{4\left\{\pi_{0}\left(1-\pi_{0}\right)\right\}^{2}}$. Note that (A23) is smaller than the usual asymptotic variance $n^{-1}\left\{\pi_{0}\left(1-\pi_{0}\right)\right\}^{-1}$ or equivalently $\operatorname{MSE}_{O\left(n^{-1}\right)}(\cdot)$ 。

Example 2 (continued). Poisson distribution.

From (A7) and (A18),

$$
\begin{equation*}
k_{\min }=5-2=3 \tag{A24}
\end{equation*}
$$

and as in (A19) or (A21).

$$
\begin{align*}
\operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}\right) & =n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[\frac{1}{2}\{\operatorname{sk}(s)\}^{2}-\{\operatorname{kt}(s)\}\right] \\
& =n^{-1} \lambda^{-1}-n^{-2} \frac{\lambda^{-2}}{2} \tag{A25}
\end{align*}
$$

(see (A7)), which is smaller than that of $\hat{\theta}_{\mathrm{ML}}$ by
$n^{-2} 9 \alpha_{\mathrm{MLI}}^{2}=n^{-2} i_{0}^{-1}(9 / 4)\{\operatorname{sk}(s)\}^{2}=n^{-2}(9 / 4) \lambda^{-2}$ (see (A17)). Note that (A25) is smaller than the usual asymptotic variance $n^{-1} \lambda^{-1}$ or equivalently $\operatorname{MSE}_{O\left(n^{-1}\right)}(\cdot)$.

Example 3 (continued). Gamma distribution with known shape parameter.

From (A8) and (A18),

$$
\begin{equation*}
k_{\min }=5-2 \times \frac{3}{2}=2 \tag{A26}
\end{equation*}
$$

and from (4.2) and (A17)

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}\right) \\
& =n^{-1} i_{0}^{-1}+n^{-2} i_{0}^{-1}\left[\frac{5}{2}\{\operatorname{sk}(s)\}^{2}-\{\operatorname{kt}(s)\}+\frac{1}{4}\{\operatorname{sk}(s)\}^{2}\left(1-2^{2}\right)\right] \\
& =n^{-1} \gamma^{-1} \lambda^{-2}+n^{-2} \gamma^{-1} \lambda^{-2}\left\{\left(\frac{5}{2}-\frac{3}{4}\right) 4-6\right\} \gamma^{-1} \tag{A27}\\
& =n^{-1} \gamma^{-1} \lambda^{-2}+n^{-2} \gamma^{-2} \lambda^{-2},
\end{align*}
$$

which is smaller than that of $\hat{\theta}_{\mathrm{ML}}$ by $n^{-2} 4 \alpha_{\mathrm{ML} 1}^{2}=n^{-2} 4 \gamma^{-2} \lambda^{-2}$.

A. 5 The asymptotic cumulants and associated results for Example 4

Noting that $-(X-\mu)^{2} / 2$ is a negatively scaled chi-square distributed variable with 1 degree of freedom and using $2^{c-1}(c-1)!v$ for the c-th cumulant of the chi-squared variable with v degrees of freedom,

$$
\begin{align*}
& \mathrm{E}\left(s_{d}\right)=\frac{1}{2}\left(\mu^{2}-\sigma^{2}\right), i_{0}^{*} \equiv \operatorname{var}\left(s_{d}\right)=\frac{\sigma^{4}}{2}, \kappa_{3}\left(s_{d}\right)=\left(-\frac{\sigma^{2}}{2}\right)^{3} 8=-\sigma^{6} \\
& \kappa_{4}\left(s_{d}\right)=\left(-\frac{\sigma^{2}}{2}\right)^{4} 48=3 \sigma^{8}, \operatorname{sk}\left(s_{d}\right)=-\frac{\sigma^{6}}{\left(\sigma^{4} / 2\right)^{3 / 2}}=-\sqrt{8} \tag{A28}
\end{align*}
$$

$$
\mathrm{kt}\left(s_{d}\right)=\frac{3 \sigma^{8}}{\left(\sigma^{4} / 2\right)^{2}}=12, \alpha_{\mathrm{ML} 1}^{*}=-\frac{1}{2}\left\{\operatorname{var}\left(s_{d}\right)\right\}^{-1 / 2} \operatorname{sk}\left(s_{d}\right)=\frac{2}{\sigma^{2}}=2 \theta_{0}^{*},
$$

where $\alpha_{\mathrm{ML} j}^{*}$ is defined for $\hat{\theta}_{\mathrm{ML}}^{*}$ (the MLE of θ_{0}^{*}) similarly to $\alpha_{\mathrm{ML} j}$ for $\hat{\theta}_{\mathrm{ML}}$, giving

$$
\begin{equation*}
\frac{\mathrm{kt}\left(s_{d}\right)}{\left\{\operatorname{sk}\left(s_{d}\right)\right\}^{2}}=\frac{3}{2} \tag{A29}
\end{equation*}
$$

which belongs to advantageous Area A in Table 1 for $\hat{\theta}_{\mathrm{JM}}^{*}$ over $\hat{\theta}_{\mathrm{ML}}^{*}$. From (A29),

$$
\begin{equation*}
k_{\min }=5-2 \times \frac{3}{2}=2 \tag{A30}
\end{equation*}
$$

which does not depend on θ_{0}^{*}, and gives as in (A27),

$$
\begin{align*}
& \operatorname{MSE}_{O\left(n^{-2}\right)}\left(\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}^{*}\right)=n^{-1}\left(i_{0}^{*}\right)^{-1}+n^{-2}\left\{\alpha_{\mathrm{ML} 22}^{*}+\left(\alpha_{\mathrm{MLI} 1}^{*}\right)^{2}\left(1-k_{\min }^{2}\right)\right\} \\
& =n^{-1} 2 \sigma^{-4}+n^{-2} 2 \sigma^{-4}\left\{\left(\frac{5}{2}-\frac{3}{4}\right)(-\sqrt{8})^{2}-12\right\} \tag{A31}\\
& =n^{-1} 2 \sigma^{-4}+n^{-2} 4 \sigma^{-4}
\end{align*}
$$

which is smaller than that of $\hat{\theta}_{\mathrm{ML}}^{*}$ by $n^{-2} 4\left(\alpha_{\mathrm{ML} 1}^{*}\right)^{2}=n^{-2} 16 \sigma^{-4}$.
From (A28) and (A29),

$$
\begin{equation*}
\hat{\theta}_{\mathrm{C}\left(k_{\min }\right)}^{*}=\hat{\theta}_{\mathrm{ML}}^{*}-n^{-1} k_{\min } \hat{\alpha}_{\mathrm{ML} 1}^{*}=\left(1-n^{-1} 4\right) \hat{\theta}_{\mathrm{ML}}^{*} \tag{A32}
\end{equation*}
$$

On the other hand, the bias-corrected estimator is

$$
\begin{equation*}
\hat{\theta}_{\mathrm{C}(1)}^{*}=\hat{\theta}_{\mathrm{ML}}^{*}-n^{-1} \hat{\alpha}_{\mathrm{ML} 1}^{*}=\left(1-n^{-1} 2\right) \hat{\theta}_{\mathrm{ML}}^{*} \tag{A33}
\end{equation*}
$$

Note that the MLE $\hat{\sigma}^{2}=n^{-1} \sum_{j=1}^{n}\left(x_{(j)}-\mu\right)^{2}$ with known μ is an unbiased sample mean over n observations. By elementary algebra (e.g., Gruber, 1998, Section 1.6; Ogasawara, 2014, Section 3.1), the exact solution of the
constant minimizing $\operatorname{MSE}_{o\left(n^{-2}\right)}\left(c^{*} \hat{\sigma}^{2}\right)$ is given by

$$
\begin{equation*}
c_{\min }^{*}=\frac{1}{1+n^{-1} \frac{\operatorname{var}\left\{(X-\mu)^{2}\right\}}{\left[\mathrm{E}\left\{(X-\mu)^{2}\right\}\right]^{2}}}=\frac{1}{1+n^{-1} 2}=1-n^{-1} 2+O\left(n^{-2}\right), \tag{A34}
\end{equation*}
$$

which is a fortunate case in that $c_{\text {min }}^{*}$ does not depend on θ_{0}^{*}, or equivalently in that (A34) is given by the known coefficient of variation $\sqrt{2}$, which is crucial to $c_{\text {min }}^{*}$. It is seen that (A34) for $\hat{\sigma}^{2}$ is asymptotically equal to the factor $\left(1-n^{-1} 2\right)$ for $\hat{\theta}_{\mathrm{ML}}^{*}=1 / \hat{\sigma}^{2}$ in (A33) rather than that of (A32). Incidentally, when μ is unknown, the constant $1 /\left(1+n^{-1}\right)$ minimizing the MSE of $c^{*} n^{-1} \sum_{j=1}^{n}\left(x_{(j)}-\bar{x}\right)^{2}$ under normality is well known (e.g., DeGroot \& Schervish, 2002, p.431) though it is inadmissible (Stein, 1964).

Using Theorem 2, the following asymptotic cumulants are obtained

$$
\begin{align*}
& \alpha_{\mathrm{ML} 1}^{(t)}=0, \quad \alpha_{\mathrm{ML} 2}^{(t)}=1, \\
& \alpha_{\mathrm{ML} \Delta 2}^{(t)}=-\frac{3}{4}\left\{\operatorname{sk}\left(s_{d}\right)\right\}^{2}+\frac{\mathrm{kt}\left(s_{d}\right)}{2}=-\frac{3}{4} \times 8+\frac{12}{2}=0, \\
& \alpha_{\mathrm{ML} 3}^{(t)}=\operatorname{sk}\left(s_{d}\right)=-\sqrt{8}, \tag{A35}\\
& \alpha_{\mathrm{ML} 4}^{(t)}=-3\left\{\operatorname{sk}\left(s_{d}\right)\right\}^{2}+3 \mathrm{kt}\left(s_{d}\right)=-3 \times 8+3 \times 12=12=\operatorname{kt}\left(s_{d}\right),
\end{align*}
$$

where it is of interest to find that $\alpha_{\mathrm{ML} \Delta 2}^{(t)}=0$ and $\alpha_{\mathrm{ML} 4}^{(t)}=\operatorname{kt}\left(s_{d}\right)$ in this example.

Though the results of (A28) were directly obtained, they can also be given by $a\left(\theta^{*}\right)=\frac{\mu^{2}}{2 \sigma^{2}}+\frac{1}{2} \log \sigma^{2}=\frac{\theta^{*}}{2} \mu^{2}-\frac{1}{2} \log \theta^{*}$ as

$$
\begin{aligned}
& \frac{\partial a\left(\theta_{0}^{*}\right)}{\partial \theta_{0}^{*}}=\frac{\mu^{2}}{2}-\frac{1}{2 \theta_{0}^{*}}=\frac{1}{2}\left(\mu^{2}-\sigma^{2}\right)=\mathrm{E}\left(s_{d}\right), \\
& i_{0}^{*}=\frac{\partial^{2} a\left(\theta_{0}^{*}\right)}{\partial \theta_{0}^{* 2}}=\frac{1}{2 \theta_{0}^{* 2}}=\frac{\sigma^{4}}{2}=\operatorname{var}\left(s_{d}\right),
\end{aligned}
$$

$$
\begin{align*}
& i_{0}^{*(\mathrm{D} 1)}=\frac{\partial^{3} a\left(\theta_{0}^{*}\right)}{\partial \theta_{0}^{* 3}}=-\frac{1}{\theta_{0}^{* 3}}=-\sigma^{6}=\kappa_{3}\left(s_{d}\right) \\
& i_{0}^{*(\mathrm{D} 2)}=\frac{\partial^{4} a\left(\theta_{0}^{*}\right)}{\partial \theta_{0}^{* 4}}=\frac{3}{\theta_{0}^{* 4}}=3 \sigma^{8}=\kappa_{4}\left(s_{d}\right) \tag{A36}
\end{align*}
$$

References

DeGroot, M. H., \& Schervish, M. J. (2002). Probability and statistics (3rd ed.). Boston, MA: Addison-Wesley.
Gruber, M. H. J. (1998). Improving efficiency by shrinkage: The James-Stein and ridge regression estimators. New York: Marcel Dekker.
Ogasawara, H. (2013). Asymptotic cumulants of the estimator of the canonical parameter in the exponential family. Journal of Statistical Planning and Inference, 143, 2142-2150.
Ogasawara, H. (2014). Bias adjustment minimizing the asymptotic mean square error. To appear in Communications in Statistics - Theory and Methods.
Stein, C. (1964). Inadmissibility of the usual estimator for the variance of a normal distribution with unknown mean. Annals of the Institute of Statistical Mathematics, 16, 155-160.

