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Proof of Theorem 1
Since
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(see e.g. Siotani, Hayakawa & Fujikoshi, 1985, Equation (2.4.11)), we have
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When Λ O , E(GD )pq pq , which gives from the above result
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Proof of Theorem 2
The expectations in (3.4) are given by (2.2), (2.4), (2.5) and (2.6)

for Λ O . For the variances of (3.4), noting that under normality
1

U and

|p U are independent, the following result will be used when iX is

independent of ( , 1, 2)jY i j  :
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When Λ O , since
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 U Σ U Σ is Wishart-distributed with the

covariance matrix ( )nI and p p  degrees of freedom, which is denoted

by ( )W( , )n p p I , we have
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where ( )ij indicates the (i, j)th element of a matrix and ik is the Kronecker

delta. On the other hand,
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(see e.g. Siotani et al., 1985, Equation (2.4.12)).
From (A.2),
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(A.4)
which gives the variances in (3.4). Equation (A.4) is partially justified in that
when q = 1, (A.4) with (3.3) gives the well-known variance
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of the central F distribution with p p  and n p degrees of freedom.

Proof of Corollary 2
From (3.2) when q =1,
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(A.6)
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which yield the results of Corollary 2.

Proof of Corollary 3
The properties of the noncentral F distribution are well documented (e.g.,

Johnson, Kotz & Balakrishnan, 1994, Chapter 30). The expectation when

2n p  and variance when 4n p  for the noncentral F distribution

denoted by F* in Corollary 2 are
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respectively. Then, when ( )O n  ,
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which give (3.7).
Using (A.7),
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follows. Equation (A.8) gives (3.8). From the unbiased property of MC pq and

the definitions of C p and Cp , we have the results of (3.9) except its last

inequality MSE(C ) MSE(C )p p , which is given by
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(recall the assumption p p  in Section 1) and var(C ) var (C )p p .

Proof of Lemma 1

Since
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Proof of Corollary 4
First, we obtain
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(A.9)

which can be positive or negative, as shown in the following examples. When q
= 1, the numerator of the first factor on the right-hand side of the last equation
of (A.9) is
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where for var(C )p , (3.2) and (A.5) are used.

When n is sufficiently large, (A.10) is positive, demonstrating that in this

case, min C
MSE(MC ) MSE( C )

pqpq pqd . However, when n is relatively small,

we define 4n p a   (see a condition for (A.3)) and 0p p b   

(recall the assumption p p  in Section 1). Then, (A.10) becomes
2 2 24 4 2 ( 2) / ( 4)ap p ba a b a      , which is negative when

2 2 ( 2) /{2( 1)( 4)}p ba a b a a     . For instance, when a = 5 and b = 1,

the last inequality holds when 4p  . From this result, we have the central

inequality min{ } max{ }   in (4.2). The remaining inequalities are given by

the unbiased property of MC pq and the definitions of Cpq and Cpq .

Proof of Theorem 4
From (A.6) and (A.7), we have

2

2 *

2

2
var(MC ) ( ) var( )

( ) ( 2 )( 2)
2 .

4

pq

n p
p p F

n p

p p p p n p

n p

 






  



  
   

 

      


 

(A.11)

Substituting (A.11) for the first equation of (4.3) given by Lemma 1, the second
equation of (4.3) follows.

Results associated with Theorem 4 when (1)O  and 0 
When (1)O  , from (A.11) we have
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Note that when 0  , (3.2) and (A.7) yield
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(see (4.1)). From (A.12) and (A.13), when (1)O  , it is seen that (A.12) is

given from the last two sets of results of (A.13) by replacing p p  and
2p

with 2p p    and
2( )p  , respectively. However, as described

earlier, generally ( )O n  , giving (A.8).
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