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Asymptotic cumulants of the parameter estimators in item response theory 

 

The asymptotic cumulants of the parameter estimators for the three-parameter logistic 

model in item response theory are derived up to the fourth order with the higher-order added 

asymptotic variances. The asymptotic cumulants of the corresponding Studentized 

estimators up to the third order are also given. The estimators are obtained by marginal 

maximum likelihood using the standard normal distribution for the latent variable with and 

without model misspecification. Numerical examples with fixed guessing parameters show 

advantages of the asymptotic expansions over the usual normal approximation. 

 

Key words: item response theory, bias, skewness, marginal maximum likelihood, model 

misspecification, asymptotic expansion. 
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1. Introduction 

Models in item response theory (IRT) include latent variable(s) representing e.g., 

abilities of subjects or examinees. When the scores of the latent variables are seen as fixed 

values, they are unknown parameters to be estimated with structural item parameters (see 

e.g., Lord & Novick, 1968, Chapter 20; Lord, 1980, Chapter 12), which gives joint 

maximum likelihood (JML) estimation. On the other hand, when the ability scores are seen 

as realized values of random variables, only the item parameters are estimated. The latter 

method was given by Bock and Lieberman (1970) and Bock (1972) for binary and 

polytomous nominal data, respectively using marginal maximum likelihood (MML) 

estimation, where the latent variables are integrated out in estimation. One of the problems 

in JML is that the number of ability parameters increases as the number of subjects (i.e., the 

problem of incidental parameters), from which MML is free. The method of MML was 

sophisticated by Bock and Aitkin (1981) using an EM algorithm, and seems to be a standard 

method currently used routinely in practice (Bock & Moustaki, 2007; Wirth & Edwards, 

2007, Table 1). 

The asymptotic distributions of the parameter estimators by MML are available using 

the usual normal approximation with the asymptotic standard errors (see e.g., Bock and 

Lieberman, 1970). The purpose of this article is to derive the asymptotic cumulants of the 

estimators up to the fourth order with the added higher-order asymptotic variances in the 

case of the three-parameter logistic model (3PLM) for binary responses with possible model 

misspecification. The asymptotic cumulants of the Studentized pivotal statistics up to the 

third order will also be derived. 

By using real life data available in the literature with fixed guessing parameters, it will 

be shown that the asymptotic standard errors can be substantially different from the actual 

ones even when the sample size is as large as 1,000. It will also be shown that with the large 

sample size the distributions of the parameters can be biased and strongly skewed. The 

asymptotic standard errors currently available are based on the assumption that the model is 

true. In practice, models fitted to actual data are more or less misspecified especially when 

the unidimensional latent variable is used (note that most of IRT models used in practice are 

unidimensional). The correct asymptotic standard errors as well as other asymptotic 

cumulants under possible model misspecification will be derived. Simulations will be 
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performed to see the accuracy of the asymptotic results in finite samples. 

 

2. The models and the estimators 

It is assumed that the probability of success for the i*-th examinee with ability *iθ  in 

the j-th item is given by the logistic model: 
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*

1
Pr( 1| , , , )

1 exp{ ( )}

( * 1,..., ; 1,..., )

j
i j i j j j j

j i j

c
Y a b c c

Da b

i N j n

θ
θ

−
= = +

+ − −

= =
             (2.1) 

with 
i.i.d.

* (0,1) ( * 1,..., )~i N i Nθ = , where * 1i jY =  and * 0i jY =  indicate the success 
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item. D=1.7 is a constant often employed for ease of comparison to the corresponding probit 

model. For actual computation illustrated in a later section, jc s are assumed to be known 

due to the difficulty of estimating them without strong priors or restrictions (see Thissen & 

Wainer, 1982; Ogasawara, 2002). When jc =0, (2.1) reduces to the two-parameter logistic 
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where kr  is the number of examinees showing the k-th response pattern to n items 

(k=1,…,K). The values 1 and 0 of kjX  correspond to the success and failure to the j-th 

item in the k-th response pattern. 

Note that in (2.2) the subscript i* of *iθ  is dropped since the distributions of *iθ s in 

the model are the same. It is difficult to obtain the integral of (2.2) in closed form. So, the 

result is given by the numerical method using M quadrature points 1,..., MQ Q as 

1

1 1
{ (1 ) } ( ) ( 1,..., ),kj kjnM X X

k mj mj mm j
A Q k Kπ −

= =
Ψ −Ψ =∑ ∏            (2.3) 

where ( , , , ) ( 1,..., )mj m j j jQ a b c j nΨ =Ψ =  and ( ) ( 1,... )mA Q m M=  is the weight at 

the quadrature point mQ . 

Let / ( 1,..., )k kp r N k K= =  be the sample proportion of the k-th response pattern. 

Then, when the model holds, E( )k kp π= . On the other hand, when the model is 

misspecified TE( )k k kp π π≡ ≠  with T (1)k k Oπ π− =  for some k, where T kπ  is the 

true probability for the k-th response pattern. In the following T 0( 1,..., )k k Kπ > =  are 

assumed. The case of the true model is given as a special case with 

T ( 1,.., )k k k Kπ π= = . The MML estimators are obtained by maximizing L with respect 

to the vector of q unknown parameters 

1 1 1 1( ,..., ) ' ( ,..., , ,..., , ,..., ) 'q n n na a b b c cα α= =α                (2.4) 

using (2.3) for actual computation. Note that ( 1,..., )kp k K=  are the sufficient statistics 

for the parameters. 

 

3. Asymptotic expansions of the distributions of the estimators. 

Let α  be a generic parameter representing one of the unknown parameters with 0α  

and α̂  being the population value and its estimator, respectively. Then, α̂  is seen as a 

function of 1( ,..., ) 'Kp p=p  denoted by ˆ ( )α α= p  though usually the function is an 
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implicit one. Let 
1/ 2

0ˆ( )w N α α= −  and 
1/ 2

T( )N= −u p π , where 

T T1 T( ,..., ) 'Kπ π=π . Suppose that we have the Taylor expansion of w about 0 as 
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where 
TT ˆ/ / |α α =∂ ∂ = ∂ ∂ p ππ p  with other partial derivatives defined in similar 

manners for simplicity of notation. k< > = ⊗ ⊗a a a  (k times) is the k-fold Kronecker 

product of a. Noting that p is the mean of N independent observations in the multinomial 

distribution, we have the cumulants of w up to the fourth order as 
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where 1 1 2 1/ 2 3/ 2
1 2 2 3 2, , , /N N N Nβ β β β β− − − −Δ  and 1 2

4 2/N β β−  are the asymptotic 

bias, variance, added higher-order variance, skewness and kurtosis of α̂ , respectively. 

From (3.1) and (3.2), we have 
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where  

T T T( ) , E( ) cov( , ) ( , 1,..., ),ij ij i j i j ij i i ju u N p p i j Kω δ π π π= = = = − =Ω    (3.4) 

( )ij⋅  denotes the (i, j)th element of the argument matrix, iu  is the i-th element of u and 

ijδ  is the Kronecker delta. The expressions of 2 3,β βΔ  and 4β  are given from (3.1) as 

in the case of covariance structure analysis (see Ogasawara, 2006, 2007): 



 6

2

2
, , 1 T T T

2 2 3

1 T T T T T T T T

( , , )

1 ,
2

K

i j k i j k

K

ij kl
l i k j l l i j k

J i j kα αβ
π π π

α α α α ω ω
π π π π π π π π

=

=

⎧ ∂ ∂⎪Δ = ⎨∂ ∂ ∂⎪⎩
⎫⎛ ⎞∂ ∂ ∂ ∂ ⎪+ +⎜ ⎟ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪⎝ ⎠ ⎭

∑

∑
      (3.5) 

where , , 1

K

i j k=∑ is 
1 1 1

K K K

i j k= = =
∑∑∑ , and 

2
T T T

2
T T T T T T

T T T T T

( , , ) E{( )( )( )}

( 3 ) { (1 ) (1 )

(1 ) } 2 ( , , 1,..., )

i i j j k k

ij ik i i ij ik i k ik ij i j

jk ji j i i j k

J i j k N p p p

i j k K

π π π

δ δ π π δ δ π π δ δ π π

δ δ π π π π π

= − − −

= − − − + −

+ − + =
     (3.6) 

(for (3.6) see e.g., Stuart & Ort, 1994, Equation (7.18)), 
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where ( , , , )J i j k l  is the 3N  times the fourth-order multivariate cumulant of 

, ,i j kp p p  and lp , which is available as (see e.g., Stuart & Ort, 1994, Equation (7.18)) 
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and 
k
Σ  in (3.7) denotes the sum of k similar terms. 

When the model is true, the expression of 2β  in (3.3) becomes simplified by using 

the inverse of the information matrix per observation. The expression of 2βΔ  in (3.5) has 

been somewhat simplified from the case of covariance structure analysis due to the exact 

covariance of (3.4). The expression of (3.3), (3.5) and (3.7) include partial derivatives of 

α̂  with respect to p evaluated at T=p π  up to the third order, which are given from the 

formulas of partial derivatives in implicit functions using the first-order condition of α̂ . 

The results will be given in the appendix. 

In practice, the following Studentized pivotal statistic is used since usually population 

asymptotic standard errors are not available: 

1/ 2
0

1/ 2
2

ˆ( )
ˆ

Nt α α
β

−
= .                          (3.9) 

It is assumed that the Taylor expansion for t holds as 

21/ 2
1/ 2 1/ 2 2

2 2
T T

1/ 2
3/ 2 12

2
T T

' 2 '

( ).
2 ' ' p

Nt

N O N

αβ β α

βαβ

< >−
− − < >

−
− −

⎧ ⎫⎛ ⎞∂ ∂⎪ ⎪= + ⎨ ⎬⎜ ⎟∂ ∂⎝ ⎠⎪ ⎪⎩ ⎭
∂∂

− +
∂ ∂

u u
π π

u u
π π

             (3.10) 

For the asymptotic cumulants of t up to the third order, we assume that 
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From (3.10) with (3.11), we have 
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where Tdiag( )π  is the diagonal matrix whose diagonal elements are T kπ s , Ekk  is the 

matrix whose (k, k)th element is 1 with others being 0, and ke  is the k-th column of the 

K K×  identity matrix. 

When ( 1,.., 4)i iβ =  and 2βΔ  are available, the approximation to the density by the 

two-term Edgeworth expansion is given by 
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(see e.g., Hall, 1992a), where the approximation up to 1/ 2( )O N −  is the single-term 

Edgeworth expansion. The Cornish-Fisher expansion using consistent estimators of 1 'β , 

3 'β  and 2β  is useful for constructing confidence intervals with typical asymptotic 

confidence coefficient 1 α−  (e.g., 0.05α = ) accurate up to 1/ 2( )O N − : 
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1/ 2 2 1/ 2 1/ 2
/ 2 1 3 / 2 2

ˆ ˆ ˆ ˆ[ { ' ( '/ 6)( 1)}]z n z nα αθ β β β− −+ ± − + − ,         (3.15) 

where 
/ 2 ( *) * 1 ( / 2)

z
z dzα φ α

−∞
= −∫ . Hall’s (1992b) method by variable transformation 

removing asymptotic skewness, whose accuracy is asymptotically equivalent to the 

single-term Edgeworth expansion, has the property free from the anomalous phenomena of 

locally negative densities which can happen in (3.14) with finite N. Hall’s method can also 

be used with 1̂ 'β  and 3
ˆ 'β  as in (3.15). 

 

4. Numerical illustration with simulations 

Two sets of numerical examples are illustrated in this section. The data sets used are 

binary responses by 1,000 subjects to 5 selected items each in Sections 6 and 7 of the Law 

School Admission Test (LSAT). The data were provided by Bock and Lieberman (1970, 

p.188) and reanalyzed by Bock and Aitkin (1981). While Bock and his colleagues used the 

two-parameter normal ogive model, 2PLM is used in this section. 

The item parameters were estimated by MML with 15 quadrature points for the 

unidimensional ability distribution. The estimates (used as population vales in simulations) 

in the selected items are shown in Tables 1 and 2 for Sections 6 and 7, respectively, and 

were used with other estimates as the population parameters in simulations. Tables 1 and 2 

show results with the assumption of true models (a misspecified case will be given later). 

The tables include asymptotic results for non-Studentized estimators and Studentized ones 

independent of N except for HASE/ASE = 2 1/ 2 1/ 2
2 2 2{( / ) ( / )} /( / )N N Nβ β β+ Δ  for 

non-Studentized estimators. 

In the simulations, the fitted proportions for response patterns were regarded as 

probabilities in the multinomial distribution. Using the distribution, random response 

vectors were generated. The sample sizes 1,000 and 2,000 were used. From the generated 

observations, the item parameters were estimated as for the original estimates. This 

procedure was replicated until 10,000 regular sets of estimates were obtained. The numbers 

of excluded samples due to nonconvergence are 40 (N=1,000, Table 1), 1 (N=2,000, Table 

1), 2 (N=1,000, Table 2) and 0 (N=2,000, Table 2). The data for Section 7 seem to give 

more stable results than those of Section 6 though the items in Section 6 are more 
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homogeneous than those in Section 7 (Bock & Lieberman, 1970, p.187). 

From 10,000 sets of estimates, the simulated cumulants were given from the k-statistics 

(unbiased estimators of cumulants) multiplied by appropriate powers of N for ease of 

comparison to the corresponding asymptotic values. The indexes of skewness and kurtosis 

of the non-Studentized estimators were given from the ratios of the associated asymptotic 

(simulated) cumulants raised by 1.5 or 2 for 2 2
ˆ( )β β . The simulated HASE/ASE is given 

by SD/ASE, where SD is the square root of the unbiased sample variance from 10,000 

estimates for each parameter. 

From the results in Table 1, we see that the speed of convergence of the simulated 

values to the asymptotic values for non-Studentized estimators is slow considering the 

original large sample size N=1,000. Note that 1/ 2
2β̂  of 5̂b  is two times of the asymptotic 

value with N=1,000, which can be partially explained by the substantial magnitude of the 

added higher-order variance. The ratio HASE/ASE for 5̂b  is as large as 1.30 though it is 

still conservative (note that the corresponding simulated value is 2.00 as addressed earlier). 

Fortunately, the simulated cumulants of the Studentized estimators are relatively closer to 

the corresponding asymptotic values. In Tables 1 and 2, the bias and skewness of the 

a-parameters for the non-Studentized estimators are positive while those for the 

b-parameters are negative. It is of interest to find that the signs are reversed for the 

Studentized estimators 

Table 3 shows the similar results in Section 7 with model misspecification. The true 

probabilities of the multinomial distribution were given from the original sample 

proportions. In the simulations, the true probabilities were estimated simply by their 

corresponding sample proportions. While most of the results in Table 3 are similar to those 

in Table 2, some of the simulated/asymptotic results are different (e.g., 1β =5.4 and 8.7 for 

1̂a  in Tables 2 and 3, respectively). Note that the differences in asymptotic values in the 

tables are of order O(1) and do not vanish with N →∞ . 

 

Insert Tables 1-4 and Figures 1 and 2 about here. 
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Table 4 gives the root mean square errors (RMSEs) of the distribution functions of the 

standardized estimators ( 1/ 2 1/ 2
0 2ˆ( ) /N α α β− ) approximated by the standard normal 

distribution (N*), the single-term (E1) and two-term (E2) Edgeworth expansions, and Hall’s 

(1992b) method by variable transformation (Hall). The true distribution functions were 

given from the simulated cumulative distributions at the 40 points -3.8 (0.2) 4.0. The 

RMSEs were obtained over the 40 points. The table shows that E1, E2 and Hall have 

smaller errors than N*, as a whole E2 has smaller errors than E1 and Hall, and Hall seems to 

have slightly smaller errors than E1 in these data. 

Figure 1 gives the simulated (histograms) and theoretical (curved lines) densities of the 

selected standardized estimators in Section 7 under the true model with N=1,000. The 

simulated results were given from the simulations in Table 2. Figure 2 gives the similar 

results for Studentized estimators. From the figures, we find that many of the simulated 

distributions especially for the b-parameters are biased and substantially skewed. 

 

5. Some conclusive remarks 

From the results of the numerical examples, we find that the normal approximations to 

the distributions of parameter estimators are not satisfactory even with the large sample size 

N=1,000 in the data, which gives advantages for the asymptotic expansions beyond the 

normal approximation. This corresponds to the finding that for models of categorical data as 

in IRT, sample sizes larger than those for the corresponding models of continuous variables 

are required for stable estimation (Wirth & Edwards, 2007, p.73). This may be partially 

explained by loss of information by categorizing continuous latent variables. The author 

conjectures that the asymptotic normality for the estimators in IRT generally appears more 

slowly than in factor analysis for continuous observable variables. 

For the distribution of θ , the standard normal was used for simplicity, while the 

corresponding nonparametric distribution can be estimated by histograms (Bock & Aitkin, 

1981; Mislevy, 1984). In principle, the asymptotic expansions of the distributions of the 

estimated histograms can be obtained as well as those of the estimators of item parameters. 

Note that for model identification, at least two restrictions should be imposed on the 

histograms to remove the indeterminacy of the location and scale of the distribution of θ . 
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The results of the numerical examples were given by the 2PLM. For the 3PLM with 

free c-parameters, the results of the partial derivatives are shown in the appendix. The 

theoretical results for the asymptotic expansion for the 3PLM can be obtained using the 

partial derivatives though the numerical results were not given in this paper due to the 

difficulty for the corresponding simulated results mentioned earlier. The theoretical results 

may be used as upper (lower) bounds for the asymptotic cumulants of the estimators with 

some restrictions for stable estimation used in practice. 

Overall, the effect of model misspecification in the numerical examples was not large in 

practical sense. However, it is dangerous to generalize the conclusion to other data with e.g., 

gross model misspecification. 

In this paper, the 3PLM with usual model specification i.e., ( )j j jv Da bθ= −  is used, 

while we can use the intercept parameter as *( )j j jv D a bθ= + , where *
j j jb a b= − . The 

difficulty parameter jb  corresponds to the probability {(1 ) / 2} (1 ) / 2j j jc c c+ − = +  

when jbθ =  while *
jb  is 1D−  times the logit when θ =0. The asymptotic expansions 

for *ˆ
jb  can be easily obtained by using *ˆˆ / ( , 1) 'j jv D θ∂ ∂ =h , 2 * 2ˆˆ /j jv < >∂ ∂ =h 0  and 

* *ˆˆ ˆ( , ) 'j j ja b=h  with the remaining partial derivatives being obtained by substituting *ˆ
jh  

for ˆ
jh  in the appendix. 

 

Appendix. The partial derivatives 

A1. The partial derivatives of α̂  with respect to p 

Let * 1 logl N L−=  and *l̂  be the value using the parameter estimators. Then, the 

first order conditions of α̂  are given by 

*

1

ˆ ˆ
,

ˆ ˆˆ

K
k k

k k

pl π
π=

∂∂
= =

∂ ∂∑ 0
α α                            (A.1) 

where ˆkπ  is kπ  in (2.2) with the parameters being replaced by their estimators, and the 

partial derivatives denote those evaluated at the parameter estimates. 
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Differentiating (A.1) and noting *l̂  is a linear function with respect to p, we have 
1

2 * 2 *

1
2 2 * 3 * 3 *2

1 1 ( , )

ˆ ˆˆ
,

ˆ ˆ ˆ' ' '

ˆ ˆ ˆˆ ˆ ˆˆ
,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ'

q q
a b a

a b i ji j a b i j a i j

l l

l l l
p p p p p p

α α α
α α α

−

−

= =

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

⎫⎛ ⎞ ⎧ ∂ ∂ ∂∂ ∂ ∂ ∂⎪ ⎪= − +⎜ ⎟ ⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠ ⎩ ⎭
∑ ∑ ∑

α
p α α α p

α
α α α α

 

1
3 2 * 4 *

1 1 1

23 * 4 *3

( , , )

3 *

ˆ ˆ ˆ ˆ ˆˆ
ˆ ˆ ˆ ˆ ˆ ˆ'

ˆ ˆˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

q q q
a b c

a b ci j k a b c i j k

a b a b

i j k a b i j k a b i j k

l l
p p p p p p

l l
p p p p p p

l

α α α
α α α

α α α α
α α α α

−

= = =

⎡⎛ ⎞ ⎧ ∂ ∂ ∂∂ ∂ ∂⎪= − ⎢⎜ ⎟ ⎨⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎪⎢⎝ ⎠ ⎩⎣
⎫⎞⎛ ∂ ∂ ∂ ∂∂ ∂ ⎪+ + ⎟⎜ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⎪⎝ ⎠⎭

∂
+

∂

∑ ∑ ∑

∑

α
α α α

α α

23

( , , )

ˆ
( , , 1,..., ),

ˆ ˆ
a

i j k a i j k

i j k K
p p p

α
α

⎤∂
=⎥

∂ ∂ ∂ ∂ ⎥⎦
∑ α

   (A.2) 

where the existence of the inverse is assumed, 
2

( , )i j
∑  is the sum of two terms with similar 

patterns with respect to a and b, and 
3

( , , )i j k
∑  is similarly defined. 

 

A2. The partial derivatives of *l̂  with respect to α̂  and p 

The partial derivatives in (A.2) include those of *l̂  with respect to α̂  and p, which 

are given as follow: 
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22 * 2 *
1

2
1

3 23 * 3

2
1 ( , , )

3

ˆ ˆˆ ˆ ˆ ˆ ' ˆ, {diag( )} ,
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ' ' ' '

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ2
ˆˆ

K
i i i i i

i i i

K
i i i i i

i a b ca b c i a b c i a b c

i i

i a

p pl l

p pl

p

π π π
π π

π π π
α α α π α α α π α α α

π π
π α

−

=

=

⎛ ⎞∂ ∂ ∂∂ ∂ ∂
= − =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ∂ ∂ ∂∂
= −⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝

∂ ∂
+

∂

∑

∑ ∑

π π
α α α α α α α p α

23 *

2

ˆ
,

ˆ ˆ
ˆ ˆ ˆ ˆ1 1 ,

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

i i

b c

k k k

a b k k a b k a b

l
p

π
α α

π π π
α α π α α π α α

⎞∂
⎟∂ ∂ ⎠

∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂ ∂ ∂

 

4 34 * 4

2
1 ( , , , )

2 2 23 6

2 3
( , , , ) ( , , , )

4

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ ˆ2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

6
ˆ

K
i i i i i

i a b c da b c d i a b c d i a b c d

i i i i i i i

a b c d a b c di a b c d i a b c d

i

i

p pl

p p

p

π π π
α α α α π α α α α π α α α α

π π π π π
π α α α α π α α α α

π

=

⎛ ∂ ∂ ∂∂
= −⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝

∂ ∂ ∂ ∂ ∂
− +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂
−

∑ ∑

∑ ∑

3 24 * 3

2
( , , )

3

ˆ ˆ ˆ ˆ
,

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ
ˆ ˆ ˆ2

ˆ ˆ ˆˆ
( , , , 1,..., ; 1,..., ).

i i i i

a b c d

k k k

a b ca b c k k a b c k a b c

k k k

k a b c

l
p

a b c d q k K

π π π π
α α α α

π π π
α α α π α α α π α α α

π π π
π α α α

⎞∂ ∂ ∂
⎟∂ ∂ ∂ ∂ ⎠

∂ ∂ ∂∂
= −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+

∂ ∂ ∂
= =

∑ (A.3) 

 

A3. The partial derivatives of ˆiπ  with respect to α̂  

The results in (A.3) include the partial derivatives of ˆiπ  with respect to α̂ , which are 

given in this subsection. Let ( ', ) 'j j jc=d h  with ( , ) 'j j ja b=h , 

1
( , )

1 exp{ ( )}
j

j j j
j j

c
c

Da b
θ

θ
−

Ψ = Ψ = +
+ − −

d                  (A.4) 

and ˆ ˆ( , ) ( 1,..., )j j j nθΨ = Ψ =d . Then, 
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1

1

ˆˆ ( ) ,

ˆ ˆˆ (1 ) ( 1,..., ),ij ij

i i

n X X
i j jj

d

i K

π φ θ θ
∞

−∞

−

=

= Γ

Γ = Ψ −Ψ =

∫
∏                 (A.5) 

where the integral should be replaced by summation with appropriate quadrature weights 

for actual computation. The partial derivatives of ˆiπ  with respect to ˆ
jd  are as follows. 

1
( )

ˆˆ ˆ( 1) ( )ˆ ˆ
ijX ji

i j
j j

dπ φ θ θ
∞+

−∞

∂Ψ∂
= − Γ

∂ ∂∫d d ,                 (A.6) 

where 

 

ˆ ˆˆ 11 ˆ ˆˆ( )(1 ) ,ˆ ˆˆ ˆ1 1'

ˆˆ ˆ ˆˆ(1 ) (1 ) ,1ˆ '

'

'

j j j
j j j

j jj j

j
j j j j

j

v
c

c c

v
c

⎧ ⎫∂Ψ ∂ −Ψ⎪ ⎪= Ψ − −Ψ⎨ ⎬− −∂ ∂⎪ ⎪⎩ ⎭

⎧ ⎫∂⎪ ⎪= − Β −Β −Β⎨ ⎬
∂⎪ ⎪⎩ ⎭

d h

h

                 (A.7) 

with ˆˆ ˆ( ), 1/{1 exp( )}j j j j jv Da b vθ≡ − Β ≡ + −  and ˆˆˆ ˆ/ ( , ) ';j j j jv D b aθ∂ ∂ = − −h  

and 
1

( )
ˆ ˆˆ ˆ /{ (1 ) } ( 1,..., ; 1,..., )ij ijX X

i j i j j i K j n−Γ = Γ Ψ −Ψ = = .              (A.8) 

The second partial derivatives are given as: 

22
1

( )2 2

ˆˆ ˆ( 1) ( )ˆ ˆ
ijX ji

i j
j j

dπ φ θ θ
∞+

< > < >−∞

∂ Ψ∂
= − Γ

∂ ∂∫d d                  (A.9) 

with the nonzero partial derivatives being 

22 2

2 2

ˆ ˆ ˆˆ ˆ ˆˆ(1 ) (1 ) (1 2 )ˆ ˆ ˆ

'
j j j

j j j j
j j j

v v
c

< >

< > < >

⎧ ⎫⎛ ⎞∂ Ψ ∂ ∂⎪ ⎪= − Β −Β − Β +⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭
h h h ,                

where 

2

2

ˆ
(0, 1, 1,0) 'ˆ

j

j

v
D

< >

∂
= − −

∂h  and 

2 ˆ ˆˆ ˆ(1 )ˆ ˆˆ
j j

j j
j j j

v
c

∂ Ψ ∂
= −Β −Β

∂ ∂ ∂h h ; 
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2

( )

ˆ ˆˆ ˆ( 1) ( )ˆ ˆ ˆ ˆ
ij ikX X ji k

i jk
j k j k

dπ φ θ θ
∞+

−∞

⎛ ⎞∂Ψ∂ ∂Ψ
= − ⊗ Γ⎜ ⎟⎜ ⎟∂ ⊗∂ ∂ ∂⎝ ⎠

∫d d d d          (A.10) 

with 
1 1

( )
ˆ ˆ ˆ ˆˆ ˆ /{ (1 ) (1 ) } ( 1,..., ; , 1,..., , )ij ij ik ikX X X X

i jk i j j k k i K j k n j k− −Γ = Γ Ψ −Ψ Ψ −Ψ = = ≠ . 

The third partial derivatives are given below: 

33
1

( )3 3

ˆˆ ˆ( 1) ( )ˆ ˆ
ijX ji

i j
j j

dπ φ θ θ
∞+

< > < >−∞

∂ Ψ∂
= − Γ

∂ ∂∫d d                 (A.11) 

with the nonzero partial derivatives being 
33

2
3

23

2

ˆ ˆˆ ˆ ˆ ˆˆ(1 ) (1 ) (1 6 6 )ˆ ˆ

ˆ ˆˆ(1 2 ) ˆ ˆ

j j
j j j j j

j j

j j
j

j j

v
c

v v

< >

< >

< >

⎧ ⎛ ⎞∂ Ψ ∂⎪= − Β −Β − Β + Β ⎜ ⎟⎨ ⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩
⎫∂ ∂ ⎪+ − Β ⊗ ⎬

∂ ∂ ⎪⎭
∑

h h

h h

 

and 

23 2

2 2

ˆ ˆ ˆˆ ˆ ˆ(1 ) (1 2 )ˆ ˆ ˆˆ
j j j

j j j
j j j j

v v
c

< >

< > < >

⎧ ⎛ ⎞ ⎫∂ Ψ ∂ ∂⎪ ⎪= −Β −Β − Β +⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ⎪⎪ ⎝ ⎠ ⎭⎩
h h h , 

where 

2 2 2 23

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ @
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ@

j j j j j j j j

j j j j j j j j

v v v v v v v v
< > < > < >

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⊗ = ⊗ + ⊗ + ⊗ ⊗

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∑ h h h h h h h h h  

with 
2 2ˆ ˆ ˆ ˆ1 1 1@ 1
ˆ ˆ ˆ ˆ ˆ ˆ1 1 1@

j j j j

j j j

v v v v⎧ ⎫∂ ∂ ∂ ∂⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⊗ ⊗ ≡ ⊗ ⊗ ⊗ ⊗⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎩ ⎭⎩ ⎭h h h h h h  and  

indicating the Hadamard product; 

23

( )2 2

ˆ ˆˆ ˆ( 1) ( )ˆ ˆ ˆ ˆ
ij ikX X ji k

i jk
j k j k

dπ φ θ θ
∞+

< > < >−∞

⎛ ⎞∂ Ψ∂ ∂Ψ
= − ⊗ Γ⎜ ⎟⎜ ⎟∂ ⊗∂ ∂ ∂⎝ ⎠

∫d d d d ;        (A.12) 

3
1

( )

ˆ ˆ ˆˆ ˆ( 1) ( )ˆ ˆ ˆ ˆ ˆ ˆ
ij ik ilX X X ji k l

i jkl
j k l j k l

dπ φ θ θ
∞+ + +

−∞

⎛ ⎞∂Ψ∂ ∂Ψ ∂Ψ
= − ⊗ ⊗ Γ⎜ ⎟⎜ ⎟∂ ⊗∂ ⊗∂ ∂ ∂ ∂⎝ ⎠

∫d d d d d d ; 

(A.13) 
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where ( )
ˆ

i jklΓ  is defined similarly as ( )
ˆ ( 1,..., ; , , 1,..., ;i jk i K j k l nΓ = =  

, , )j k j l k l≠ ≠ ≠  

Finally, the fourth partial derivatives are given. 

44
1

( )4 4

ˆˆ ˆ( 1) ( )ˆ ˆ
ijX ji

i j
j j

dπ φ θ θ
∞+

< > < >−∞

∂ Ψ∂
= − Γ

∂ ∂∫d d                 (A.14) 

with the nonzero partial derivatives being 
44

2 3
4

2 22 26 3
2

2 2

ˆ ˆˆ ˆ ˆ ˆ ˆˆ(1 ) (1 ) (1 14 36 24 )ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ(1 6 6 ) (1 2 )ˆ ˆ ˆ

j j
j j j j j j

j j

j j j
j j j

j j j

v
c

v v v

< >

< >

< > < >

< > < >

⎧ ⎛ ⎞∂ Ψ ∂⎪= − Β −Β − Β + Β − Β ⎜ ⎟⎨ ⎜ ⎟∂ ∂⎪ ⎝ ⎠⎩
⎫⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ⎪+ − Β + Β ⊗ + − Β⎜ ⎟ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎪⎝ ⎠ ⎝ ⎠ ⎭

∑ ∑

h h

h h h

 

and 
34 23

2
3 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ(1 ) (1 6 6 ) (1 2 ) ;ˆ ˆ ˆ ˆˆ
j j j j

j j j j j
j j j j j

v v v
c

< >

< > < >

⎧ ⎛ ⎞ ⎫∂ Ψ ∂ ∂ ∂⎪ ⎪= −Β −Β − Β + Β + − Β ⊗⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ ∂ ∂ ∂ ⎪⎪ ⎝ ⎠ ⎭⎩
∑h h h h  

34

( )3 3

ˆ ˆˆ ˆ( 1) ( )ˆ ˆ ˆ ˆ
ij ikX X ji k

i jk
j k j k

dπ φ θ θ
∞+

< > < >−∞

⎛ ⎞∂ Ψ∂ ∂Ψ
= − ⊗ Γ⎜ ⎟⎜ ⎟∂ ⊗∂ ∂ ∂⎝ ⎠

∫d d d d ;        (A.15) 

4

2

2
1

( )2

ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( 1) ( )ˆ ˆ ˆ
ij ik il

i

j k l

X X X j k l
i jkl

j k l

d

π

φ θ θ

< >

∞+ + +

< >−∞

∂
∂ ⊗∂ ⊗∂

⎛ ⎞∂ Ψ ∂Ψ ∂Ψ
= − ⊗ ⊗ Γ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

∫

d d d

d d d

;    (A.16) 

4

( )

ˆ
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ( 1) ( )ˆ ˆ ˆ ˆ

ij ik il im

i

j k l m

X X X X j k l m
i j k l m

j k l m

d

π

φ θ θ
∞+ + +

−∞

∂
∂ ⊗∂ ⊗∂ ⊗∂

⎛ ⎞∂Ψ ∂Ψ ∂Ψ ∂Ψ
= − ⊗ ⊗ ⊗ Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫

d d d d

d d d d

;(A.17) 
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with the similar definition of ( )
ˆ

i j k l mΓ  

( 1,..., ; , , , 1,..., , , , , , , )i K j k l m n j k j l j m k l k m l m= = ≠ ≠ ≠ ≠ ≠ ≠ . 

 

References 

Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored 

in two or more nominal categories. Psychometrika, 37, 29-51. 

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item 

parameters: Application of an EM algorithm. Psychometrika, 46, 443-459. 

Bock, R. D., & Lieberman, M. (1970). Fitting a response model for n dichotomously scored 

items. Psychometrika, 35, 179-197. 

Bock, R. D., & Moustaki, I. (2007). Item response theory in a general framework. In C. R. 

Rao & S. Sinharay (Eds.), Handbook of Statistics, Vol. 26. Psychometrics 

(pp.469-513). New York: Elsevier. 

Hall, P. (1992a). The bootstrap and Edgeworth expansion. New York: Springer. Corrected 

printing, 1997. 

Hall, P. (1992b). On the removal of skewness by transformation. Journal of the Royal 

Statistical Society, B, 54, 221-228. 

Lord, F. M. (1980). Applications of item response theory to practical testing problems. 

Hillsdale, NJ: Erlbaum. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, 

MA: Addison-Wesley. 

Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359-381 

Ogasawara, H. (2002). Stable response functions with unstable item parameter estimates. 

Applied Psychological Measurement, 26, 239-254 

Ogasawara, H. (2006). Asymptotic expansion of the sample correlation coefficient under 

nonnormality. Computational Statistics and Data Analysis, 50, 891-910. 

Ogasawara, H. (2007). Higher-order estimation error in structural equation modeling. 

Economic Review, Otaru University of Commerce, 57 (4), 131-160. 

http://www.res.otaru-uc.ac.jp/~hogasa/ 

Stuart, A., & Ord, J. K. (1994). Kendall’s advanced theory of statistics: Distribution theory 



 19

(6th ed., Vol.1). London: Arnold. 

Thissen, D., & Wainer, H. (1982). Some standard errors in item response theory. 

Psychometrika, 47, 397-412. 

Wirth, R. J., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future 

directions. Psychological Methods, 12, 58-79. 



 

 
     Table 1. Simulated and asymptotic cumulants of the parameter estimators for LSAT Section 6 
     under a true model 

 1/ 2
2β (dispersion) 

    Sim. (N) 
(1000)  (2000)  Th. 

1β (bias) 

Sim. (N) 
(1000)  (2000)  Th. 

3/ 2
3 2/β β (skewness) 

Sim. (N) 
(1000)  (2000)  Th. 

a1 

a3 

a5 

b1 

b3 

b5 

 5.4 5.1 4.8 
 5.1 4.5 4.2 
 4.0 3.9 3.7 
 52.7 35.0 27.3 
 3.4 3.2 3.1 
 52.6 34.1 26.3 

 12.7 8.0 7.8 
 25.1 22.9 18.5 
 4.0 3.2 4.6 
 -363 -308 -256 
 -8 -7 -8 
 -376 -305 -242 

 23.2 15.9 11.9 
 48.2 32.7 25.0 
 14.6 11.5 9.8 
 -238 -115 -54 
 -27 -19 -18 
 -285 -121 -52 

 1/ 2
2( ')β (dispersion) 1 'β (bias) 3 'β  (skewness) 

a1 

a3 

a5 

b1 

b3 

b5 

 .93 .97 1 
 .92 .96 1 
 .95 .99 1 
 1.06 1.03 1 
 .97 .98 1 
 1.04 1.03 1 

 -1.9 -2.4 -2.2 
 -3.6 -3.2 -3.5 
 -2.3 -2.5 -1.9 
 8.9 8.5 8.5 
 4.2 4.1 3.6 
 7.9 8.1 8.2 

 -8.2 -10.2 -11.0 
 -17.7 -20.5 -23.0 
 -7.4 -8.6 -9.2 
 58.1 57.5 53.2 
 16.2 17.6 18.2 
 51.8 56.1 52.0 

  
 
 

2
4 2/β β (kurtosis) 

HASE(SD)/ASE for non-Studentized 
estimators (N) 
     (1000)           (2000)       Population 
  Sim.     Th.      Sim.    Th.    parameters 

a1 

a3 

a5 

b1 

b3 

b5 

 2010 979 557
 6119 3076 1593
 890 622 397
1.2×105 4.9×104 5870
 2186 959 876
1.7×105 5.3×104 5571

 1.11 1.07 1.05 1.04 .488 
 1.23 1.14 1.09 1.07 .521 
 1.07 1.06 1.04 1.03 .387 
 1.93 1.31 1.28 1.17 -3.35 
 1.09 1.07 1.02 1.04 -.28 
 2.00 1.30 1.29 1.16 -3.12 

     Note. Th.=Theoretical or asymptotic values, Sim.=Simulated values, 
 HASE= 2 1/ 2

2 2{( / ) ( / )}N Nβ β+ Δ , ASE= 1/ 2
2( / )Nβ , SD=Standard deviations from simulations. 

 



 

 
     Table 2. Simulated and asymptotic cumulants of the parameter estimators for LSAT Section 7 
     under a true model 

 1/ 2
2β (dispersion) 

    Sim. (N) 
(1000)  (2000)  Th. 

1β (bias) 

Sim. (N) 
(1000)  (2000)  Th. 

3/ 2
3 2/β β (skewness) 

Sim. (N) 
(1000)  (2000)  Th. 

a1 

a3 

a5 

b1 

b3 

b5 

 3.3 3.2 3.1 
 6.9 6.2 5.8 
 2.8 2.8 2.8 
 8.8 8.4 8.0 
 3.8 3.6 3.6 
 16.7 15.1 13.9 

 7.3 7.4 5.4 
 33.6 27.5 27.0 
 3.4 3.0 3.0 
 -33.1 -29.8 -34.8 
 -8.8 -9.7 -8.4 
 -92.7 -88.5 -81.8 

 11.0 11.3 10.0 
 46.6 34.3 27.0 
 5.5 7.5 6.3 
 -29.9 -27.0 -25.6 
 -17.6 -15.3 -14.6 
 -52.1 -38.4 -35.0 

 1/ 2
2( ')β (dispersion) 1 'β (bias) 3 'β  (skewness) 

a1 

a3 

a5 

b1 

b3 

b5 

 .98 .99 1 
 .97 .98 1 
 .98 .99 1 
 1.01 1.01 1 
 .99 .99 1 
 1.02 1.01 1 

 -1.0 -.9 -1.5 
 -4.1 -4.3 -4.0 
 -.8 -1.0 -.9 
 4.7 4.9 4.1 
 2.6 2.2 2.5 
 5.8 5.6 5.6 

 -8.1 -8.0 -9.0 
 -22.6 -23.5 -24.8 
 -6.1 -4.6 -5.8 
 25.7 24.4 24.9 
 13.0 13.6 14.6 
 31.2 32.5 34.0 

  
 
 

2
4 2/β β (kurtosis) 

HASE(SD)/ASE for non-Studentized 
estimators (N) 
     (1000)           (2000)       Population 
  Sim.     Th.      Sim.    Th.    parameters 

a1 

a3 

a5 

b1 

b3 

b5 

 265 309 301 
 5859 3171 1675 
 49 35 168 
 1856 1325 1366 
 687 452 487 
 6359 2838 2491 

 1.04 1.03 1.02 1.02 .580 
 1.19 1.11 1.06 1.06 .999 
 1.02 1.02 1.02 1.01 .433 
 1.10 1.08 1.05 1.04 -1.88 
 1.05 1.04 1.01 1.02 -1.06 
 1.20 1.14 1.08 1.07 -2.52 

     Note. Th.=Theoretical or asymptotic values, Sim.=Simulated values, 
 HASE= 2 1/ 2

2 2{( / ) ( / )}N Nβ β+ Δ , ASE= 1/ 2
2( / )Nβ , SD=Standard deviations from simulations. 

 



 

 
     Table 3. Simulated and asymptotic cumulants of the parameter estimators for LSAT Section 7 
     with model misspecification 

 1/ 2
2β (dispersion) 

    Sim. (N) 
(1000)  (2000)  Th. 

1β (bias) 

Sim. (N) 
(1000)  (2000)  Th. 

3/ 2
3 2/β β (skewness) 

Sim. (N) 
(1000)  (2000)  Th. 

a1 

a3 

a5 

b1 

b3 

b5 

 3.7 3.6 3.5 
 7.2 6.4 6.1 
 3.0 2.9 2.9 
 9.9 9.5 8.9 
 3.9 3.8 3.7 
 17.7 15.7 14.6 

 10.1 10.3 8.7 
 31.9 24.5 24.7 
 4.0 4.9 4.0 
 -39.5 -36.4 -39.1 
 -11.7 -13.2 -11.4 
 -98.6 -86.5 -86.9 

 12.5 12.1 12.1 
 49.7 30.5 26.3 
 8.0 6.4 7.2 
 -34.4 -31.4 -28.2 
 -20.9 -17.9 -16.3 
 -70.6 -42.0 -36.1 

 1/ 2
2( ')β (dispersion) 1 'β (bias) 3 'β  (skewness) 

a1 

a3 

a5 

b1 

b3 

b5 

 .98 1.00 1 
 .96 .97 1 
 .97 .98 1 
 1.02 1.02 1 
 .97 .98 1 
 1.02 1.00 1 

 -1.2 -1.1 -1.4 
 -4.3 -4.6 -4.4 
 -1.0 -.7 -1.0 
 5.3 5.6 4.9 
 2.4 1.9 2.3 
 5.8 6.1 5.9 

 -9.6 -11.4 -11.4 
 -21.1 -23.6 -24.4 
 -6.1 -7.2 -7.0 
 27.4 26.4 27.5 
 13.5 14.7 16.2 
 36.6 33.7 35.0 

  
 

2
4 2/β β (kurtosis) 

HASE(SD)/ASE for non-Studentized estimators (N) 
     (1000)           (2000) 
  Sim.     Th.      Sim.    Th. 

a1 

a3 

a5 

b1 

b3 

b5 

 237 305 403 
 7231 2227 1663 
 254 95 195 
 2463 1812 1632 
 1481 734 631 
 16792 3692 2632 

 1.04 1.04 1.03 1.02 
 1.18 1.11 1.05 1.06 
 1.02 1.02 1.00 1.01 
 1.11 1.09 1.06 1.05 
 1.05 1.05 1.02 1.03 
 1.21 1.14 1.08 1.07 

     Note. Th.=Theoretical or asymptotic values, Sim.=Simulated values, 
 HASE= 2 1/ 2

2 2{( / ) ( / )}N Nβ β+ Δ , ASE= 1/ 2
2( / )Nβ , SD=Standard deviations from simulations. 



 

 
    Table 4. 105×Root mean square errors of the asymptotic distribution functions of the  

standardized estimators in LSAT data 
            N=1000 

    N*     E1      E2   Hall 
           N=2000 
    N*     E1      E2   Hall 

 
a1 

a3 

a5 

b1 

b3 

b5 

Section 6, True model 
 1395 782 391 748 
 2702 1222 555 975 
 884 605 309 595 
 4871 2248 1406 2080 
 1436 580 374 438 
 5244 2441 1315 1913 

 
 750 412 234 381 
 1852 627 288 547 
 624 506 328 510 
 3578 1327 611 1005 
 883 271 262 210 
 3698 1396 628 1122 

 
a1 

a3 

a5 

b1 

b3 

b5 

Section 7, True model 
 1209 494 351 505 
 2583 966 436 757 
 652 312 181 318 
 2065 670 417 607 
 1351 391 256 318 
 3113 1033 487 943 

 
 856 334 275 333 
 1614 414 264 233 
 492 252 188 255 
 1501 507 421 519 
 1032 266 254 238 
 2215 539 225 477 

 
a1 

a3 

a5 

b1 

b3 

b5 

Section 7, Misspecified model 
 1462 441 246 444 
 2458 889 407 703 
 711 162 157 151 
 2214 673 372 561 
 1553 340 217 326 
 3059 1076 566 766 

 
 1026 356 249 353 
 1544 447 300 237 
 583 230 243 225 
 1677 509 371 509 
 1246 282 220 222 
 2126 569 305 397 

    Note. N*=Normal approximation, E1=The single-term Edgeworth expansion, E2=The two-term 
    Edgeworth expansion, Hall=Hall’s method by variable transformation. 
 
 



Section 7, Item 1, a−parameter, N=1000, True model
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Figure 1. Theoretical (curved lines) and simulated (histograms) distributions of the standardized estimators  
 in LSAT data (dashed lines=the standard normal distribution, solid lines=the single−term Edgeworth expansion, 

 dotted lines=the two−term Edgeworth expansion, long dashed lines=Hall’s variable transformation).
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Section 7, Item 5, a−parameter, N=1000, True model
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Section 7, Item 1, b−parameter, N=1000, True model
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Figure 1. Theoretical (curved lines) and simulated (histograms) distributions of the standardized estimators  
 in LSAT data (dashed lines=the standard normal distribution, solid lines=the single−term Edgeworth expansion, 

 dotted lines=the two−term Edgeworth expansion, long dashed lines=Hall’s variable transformation).

Section 7, Item 3, b−parameter, N=1000, True model
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Section 7, Item 5, b−parameter, N=1000, True model
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Section 7, Item 1, a−parameter, N=1000, True model
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Figure 2. Theoretical (curved lines) and simulated (histograms) distributions of the Studentized estimators  
 in LSAT data (dashed lines=the standard normal distribution, solid lines=the single−term 

 Edgeworth expansion, long dashed lines=Hall’s variable transformation).
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Section 7, Item 5, a−parameter, N=1000, True model
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Section 7, Item 1, b−parameter, N=1000, True model
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Figure 2. Theoretical (curved lines) and simulated (histograms) distributions of the Studentized estimators  
 in LSAT data (dashed lines=the standard normal distribution, solid lines=the single−term 

 Edgeworth expansion, long dashed lines=Hall’s variable transformation).
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