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A general formula of the higher-order asymptotic standard error is derived 
for the estimators of the parameters in structural equation modeling.  The 
formula can be used for nonnormally distributed data as well as normally 
distributed ones.  For this derivation, the third- and fourth-order asymptotic 
central moments of sample variances and covariances are provided for 
nonnormally and normally distributed cases.  The formula requires the partial 
derivatives of an estimator up to the third order with respect to sample variances 
and covariances, which are shown for the case of the Wishart maximum 
likelihood estimator.  To see the accuracy of the formula, simulations are 
performed using the factor/component analysis models.  It is numerically 
shown that some of the added contributions of the higher-order asymptotic 
standard errors are substantial with small to modest sample sizes. 
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1. Introduction 

In structural equation modeling, errors of parameter estimates due to 
sampling variation and use of some estimation methods are evaluated typically 
by the square roots of the associated mean square errors.  They are usually 
given as asymptotic standard errors and are available in the familiar programs 
e.g., Amos (Arbucle & Wothke, 1999), EQS (Bentler, 1989), LISREL 
(Jöreskog & Sörbom, 1996), Mplus (Muthén & Muthén, 2004) and RAMONA 
(Browne & Mels, 2000) with or without the assumption of multivariate 
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normality for observed variables.  Under normality, the asymptotic standard 
errors are given from the inverse of the information matrix while under 
nonnormality they are given by the sandwich-like estimators for the asymptotic 
variances shown later.  The asymptotic standard errors are of order 1/ 2( )O n− , 
where n+1 is the number of observations, and are not necessarily equivalent to 
the corresponding exact root mean square errors.  The difference stems from 
the existence of the biases of parameter estimates and from the remaining 
higher-order terms in an asymptotic expansion.  Fortunately, the biases are 
usually of order 1( )O n−  (see e.g., Siotani, Hayakawa & Fujikoshi, 1985, 
p.161), which is asymptotically smaller than that of the usual asymptotic 
standard errors.  Therefore, the latter standard errors are asymptotically 
equivalent to the corresponding root mean square errors. 

While the asymptotic standard errors usually give values accurate in 
practical sense with moderate sample sizes under some distributional conditions 
required, we often observe slightly but consistently different results between 
simulated (or true) standard errors and the asymptotic ones.  This will be 
illustrated later in the sections of numerical examples.  A method of improving 
the asymptotic standard errors has been known at least in principle as 
higher-order asymptotic expansion of parameter estimates.  This method has 
been developed mostly from theoretical viewpoint with sparse applications in 
practice (for historical reviews and summary, see Rothenberg, 1984; Ghosh, 
1994; and Kano, 1997, 1998).  In structural equation modeling the topic was 
briefly discussed by Bentler (1983, p.502) in an early stage. 

The purpose of this article is to derive a general formula of the higher-order 
(i.e., accurate up to order 2( )O n− ) asymptotic mean square error of an estimator 
with some discrepancy function and apply this to the case of the usual Wishart 
maximum likelihood estimators (MLEs) of structural parameters with and 
without the assumption of multivariate normality for observed variables.  
Similar results including numerical examples were given by Amemiya (1980) 
for the MLEs and the minimum chi-square estimators in the special case of 
logistic regression.  Numerical examples of factor/component analysis models 
with simulations will be given to show the accuracy of the formula.  It will be 
illustrated that the higher-order asymptotic standard errors well explain the 
differences of the usual asymptotic standard errors and the corresponding 
simulated ones. 
 
2. The estimators of parameters and their higher-order asymptotic 
variances 

Let θ  be the 1q×  parameter vector in a p p×  covariance matrix 
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( )=Σ Σ θ  of p observed variables.  The vector θ̂  of parameter estimates is 
assumed to be obtained by minimizing a discrepancy function of the estimators 
with regularity conditions for such function (see e.g., Browne, 1982, p.81): 

( , )F F= S Σ  subject to ( ) =h θ 0 ,                 (1) 
where S is a p p×  unbiased sample covariance matrix and ( )h θ  is a 1r×  
vector for restrictions on θ .  Note that F is a generic one including those by 
maximum likelihood and weighted/unweighted least squares.  Let 
ˆ , ( 1,..., )i i qθ =  be the i-th element of θ̂  and suppose that minimizing F gives 

îθ  which is assumed to be three times differentiable with respect to sample 
variances and covariances, and can be expanded in the following Taylor series: 
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where v( ); v( ); v( )= = ⋅σ Σ s S  is the vectorizing operator taking the 
nonduplicated elements of a symmetric matrix; and u< >s  denotes the u-fold 
(right) Kronecker product (see Kano, 1997) i.e., u< > = ⊗ ⊗ ⊗s s s s  (u 
times).  Note that the elementwise expression of e.g., the third-order term on 
the right-hand side of (2) is 
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≥ ≥ ≥

∂
− − −
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where 
1a b p a b≥ ≥ ≥ ≥

=∑ ∑ . 

In (2), iθ  and σ  are used as true or population values while they were 
variables in (1), and îθ  and s as variables in (2), which were previously 
estimates, to avoid complicated expression.  We assume that the required finite 
higher-order moments of s exist.  Then, the mean square error of îθ  is given 
from (2) as 
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where ˆ/ / |i iθ θ =∂ ∂ = ∂ ∂ s σσ s  with other similar expressions is used for 
simplicity of notation;  
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(see Kaplan, 1952, Equation (3)) with 
2
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1ˆavar( ; )i nθ −  is the usual asymptotic variance of îθ  up to order 1( )O n− ; 
vec( )⋅  is the vectorizing operator stacking the columns of a matrix; and 

,( ) ( ) acov( )ab cd abcd ab cd nω σ σ σ= = − =Ω s , using double subscript notation 

for elements, is the * *p p×  asymptotic covariance matrix of n s  with 
* ( 1) / 2p p p= + ; abcdσ  is the fourth multivariate central moment of the 

variables , ,a b cX X X  and dX ; and K is the * *p p×  matrix of the fourth 
multivariate cumulants of jX ’s.  Let the sum of the terms of order 2( )O n− in 

(4) be denoted by 2 1 2ˆ ˆavar( ; ) {abis( ; )}i in nθ θ− −Δ + , where 
2ˆavar( ; )i nθ −Δ  

is the added asymptotic variance of îθ  with correction of the asymptotic bias 
of îθ  up to order 1( )O n−  given by 

21
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Similarly, let the asymptotic variance of îθ  including the terms of order 
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1( )O n−  and 2( )O n−  be denoted by 
1 2ˆavar( ; , )i n nθ − −

.  Then, 
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The higher-order asymptotic standard error with bias correction and the 
higher-order asymptotic root mean square error of îθ  are defined as  

1 2
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The problem is to have the expectations of ( ) , ( 3,4)u u< >− =s σ  in (4) 
and the partial derivatives of îθ  with respect to s up to the third order.  The 
former results are given by Lemmas 1 to 3 in the appendix and the latter in the 
next section.  Before expanding the partial derivatives, we have the following 
general results. 

Theorem 1.  The bias-corrected higher-order asymptotic variance of îθ  
with the assumption of the existence of the associated moments of observed 
variables and three times differentiability of îθ  with respect to sample 
variances and covariances is given as 

2
2 2

2

ˆavar( ; )
'

(

2 )

1
2

i i i i
i

a b c d e f ab cd ef

abcdef ab cdef cd abef ef abcd

acd bef bcd aef abc def abd cef

abe cdf abf cde ab cd ef

i

c d e f g h ab ef

n n θ θ θ θθ
σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

θ
σ σ

− −

≥ ≥ ≥

≥ ≥ ≥

⎧ ∂ ∂ ∂ ∂⎪Δ = − +⎨ ∂ ∂ ∂ ∂ ∂⎪⎩
× − − −

− − − −

− − +

⎛ ∂
+ ⎜⎜ ∂ ∂⎝

∑∑∑

∑∑

Κ
σ σ

2 3

( )( ) ,

( 1,..., ),

i i i

a b cd gh gh ab cd ef

abcd ab cd efgh ef gh

i q

θ θ θ
σ σ σ σ σ σ

σ σ σ σ σ σ

≥

⎞∂ ∂ ∂
+ ⎟⎟∂ ∂ ∂ ∂ ∂ ∂ ⎠
⎫

× − − ⎬
⎭

=

∑∑   (9) 



 136

where abcdefσ  and abcσ  are the multivariate sixth-, and third-order central 
moments of the variables corresponding to the subscripts, respectively. 

Proof.  Using Lemmas 1 and 3, considering the symmetric properties of 
the three terms in parentheses on the right-hand side of (A19) and removing the 
term for the squared bias in (4), the result follows.  Q.E.D. 

An equivalent expression of the third term in braces on the right-hand side 

of (9) is 
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When the multivariate normality holds, we have the following result using 
elementwise expression. 

Corollary 1.  The bias-corrected higher-order asymptotic variance of îθ  
with the assumption of multivariate normality in addition to that in Theorem 1 
is 
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Proof.  Using Lemmas 2 and 3 with acov( , )ab cd ac bd ad bcn s s σ σ σ σ= +  
in the appendix and the result of Theorem 1, (11) follows.  Q.E.D. 
 
3. The third partial derivatives of an estimator with respect to sample 
variances and covariances 

In this section, we derive the third partial derivatives of an estimator îθ  



 137

with respect to sample variances and covariances with the assumption that the 
functions for parameter constraints are four times differentiable with respect to 
parameters.  The first partial derivative is required for the usual asymptotic 
variances (see (5)).  The second partial derivative is required for the 
asymptotic biases (see (6) and (10)), which was given by Shapiro (1983, 
Theorem 4.3) in a general expression without specifying discrepancy functions 
for estimators.  The actual expressions of the second partial derivatives for the 
MLEs in structural equation modeling were derived by Ogasawara (2004a) and 
the results for the generalized, scale-free and unweighted least squares 
estimators by Ogasawara (2004b).  The general result of the third partial 
derivatives shown below is an extension of these results. 

Suppose that the discrepancy function F in (1) is minimized with an 
r-dimensional vector of restrictions set equal to 0 as ( )= =h h θ 0 .  Let 

'G F= + ξ h  with ( ', ') '=η θ ξ , where ξ  is a 1r×  Lagrange multiplier 
vector.  Then, the first-order condition of θ̂  minimizing F is given as 
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Equation (12) represents an (implicit) function for θ̂  in terms of sample 
variances and covariances. 

Differentiating (12) with respect to abs , we have 
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which gives the first partial derivative of η̂  with respect to abs , 
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Again, differentiating (14) with respect to cds , 
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Let 2, ,ˆ ab cda , similarly to 1,ˆ aba  in (15), denote the ( ) 1q r+ ×  vector 
corresponding to the left-hand side of (16).  Then, we have the second partial 
derivative of η̂  with respect to abs  and cds : 
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Equation (17) is equivalent to the result first given by Shapiro (1983). 
Differentiating (16) further with respect to efs , 

3 1

3 1

3 1

4

23

( , , )

4

( , , )

23

( , , )

4

ˆ ˆˆ ˆ
ˆ ˆ ˆ ˆ

ˆ ˆˆ
ˆ ˆ ˆ

ˆ ˆˆ
ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

ˆ
ˆ ˆ

ji k

i j k i j k ab cd ef

C
ji

U V W i j i j U V W

C
ji

U V W i j i j U V W

C
i

U V W i i U V W

i U

G
s s s

G
s s s

G
s s s

G
s s s

G
s

ηη η
η η η

ηη
η η

ηη
η η

η
η

η

∂∂ ∂∂
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂∂∂
+

∂ ∂ ∂ ∂ ∂ ∂

∂∂∂
+

∂ ∂ ∂ ∂ ∂ ∂

∂∂
+

∂ ∂ ∂ ∂ ∂

∂
+

∂ ∂ ∂

∑∑∑

∑ ∑∑

∑ ∑∑

∑ ∑

η

η

η

η

η

3 1 4

( , , )

2 3

ˆˆ
ˆ

ˆ ˆ
,

ˆ ˆ '

( 1; 1; 1).

C
i

U V W i V W ab cd ef

ab cd ef

G
s s s s s

G
s s s

p a b p c d p e f

η∂ ∂
+

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
= −

∂ ∂ ∂ ∂ ∂

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

∑ ∑ η

η
η η

    (18) 



 139

where 
3 1

( , , )

C

U V W
∑ denotes a summation over the range: 

( , , ) {( , , ), ( , , ), ( , , )}U V W ab cd ef ef ab cd cd ef ab∈ . 
The range for ,

i j
∑ ∑  and 

k
∑  in (16) and (18) should be that for the 

associated parameters with functional relationships though usually 
1 1

,
q q

i j= =
∑ ∑  

and 
1

q

k=
∑  suffice as in factor analysis models.  From (18), we have 

Theorem 2.  The third partial derivatives of the estimators θ̂ , and 
estimated Lagrange multipliers ξ̂  for restrictions ˆ( ) =h θ 0  with the 
discrepancy function F under the assumption of the existence of the partial 
derivatives of Ĝ  with respect to θ̂  and sample variances and covariances up 
to the required number of times is given as 
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where 3, , ,ˆ ab cd efa  is the left-hand side of (18). 
It is obvious that Theorem 2 can be simplified when no restrictions are 

imposed on θ .  In this case, G and η  can be replaced by F and θ , 
respectively.  When the restrictions, if any, are only for model identification, 
the Lagrange multipliers can be omitted because in this case ˆ= =ξ ξ 0 , which 
yields 

'ˆ ˆ, 'ˆ '
F⎛ ⎞∂

=⎜ ⎟
∂⎝ ⎠

h 0
θ                   (20) 

in place of (12), and 0 for ˆ / , ( 1)abs p a b∂ ∂ ≥ ≥ ≥ξ .  Though the result of 
Theorem 2 is a general one, in actual computation we require different 
explications for various discrepancy functions of estimators even in a stage 
without specifying structural models.  The results in the case of the MLE are 
shown in the appendix. 
 
4. A numerical example under normality and nonnormality 
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The purpose of this section is to illustrate the accuracy of the proposed 
formulas and the relative size of HASE to ASE using a typical structural model 
with moderate sample size under normality and nonnormality.  The model 
employed is an oblique confirmatory factor analysis model for six 
unstandardized observed variables with the following population values, 

* * * *

* * * *

'
' ,

3 5 7 0 0 0 1 .5
, ,

.5 10 0 0 4 6 8
diag(18,19,20,21,22,23),

= +

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
=

Σ ΛΦΛ Ψ

Λ Φ

Ψ
        (21) 

where the loadings with asterisks are fixed parameters for model identification 
and the nonduplicated elements of Φ  are free ones.  It is known that the 
normal theory asymptotic standard errors up to order 1/ 2( )O n−  of the loading 
estimators in the model have asymptotic robustness when the common factors 
and unique factors are independently nonnormally distributed.  The remaining 
parameters do not enjoy such property (see e.g., Browne & Shapiro, 1988, 
Proposition 3.1).  Simulations were performed under normality and 
nonnormality.  Nonnormal data were generated using independently 
chi-square distributed variables with a common value of degrees of freedom 
followed by affine transformation to have zero means and unit variances for the 
first common factor and the unique factors.  The second common factor was 
generated by the weighted sum of the first factor, an independently chi-square 
distributed variable and a constant to have the population pattern of Φ .  The 
strength of nonnormality was controlled by the degrees of freedom for the 
chi-square distributions.  The values df=3 and 1 were used to represent 
substantial and strong nonnormality, respectively. 

In the simulation, the moderate sample size N=300 was used with the 
number of replications 1,000,000.  No non-convergent cases occurred.  The 
numbers of the Heywood cases included are 21, 50 and 152 for the normal and 
nonnormal data with df=3 and 1, respectively.  The simulated or empirical 
standard errors (denoted by SDs) corresponding to ˆHASE( )iθ ’s (see(8)) were 
given from the standard deviations or the square roots of the usual unbiased 
sample variances based on 1,000,000 estimates for each parameter.  Note that 
the SDs are empirically bias corrected. 

Table 1 shows the results.  The ASEs are the population asymptotic 
standard errors of order 1/ 2( )O n− .  The HASEs denote bias-corrected 
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population ˆHASE( )iθ ’s.  The values of SD/ASE are the ratios of the true 
standard errors to the corresponding asymptotic ones.  The corresponding 
theoretical values are given by HASE/ASE.  In the table, it is seen that the 
ASEs and HASEs for factor variance-covariance estimators become larger 
when nonnormality becomes stronger.  On the other hand, the ASEs for 
loading estimators are unchanged irrespective of nonnormality, which stems 
from their asymptotic robustness.  Unfortunately, the corresponding HASEs of 
the loading estimators increase mildly but systematically with the strength of 
nonnormality, which shows that the HASEs are not robust against the violation 
of normality. 

We find that the ratios HASE/ASE are reasonably similar to their 
corresponding simulated ones SD/ASE and that these ratios in nonnormal 
samples are different from those in normal samples.  Especially for the loading 
estimators, the ratios in nonnormal samples are relatively larger than those in 
other parameters due to the unchanged robust ASEs.  The largest value of the 
fractional part of AHSE/ASE is 6% for 21λ  with the corresponding simulated 
value being 7%.  Similar results were obtained using similar models e.g., the 
one-factor model and the two-factor exploratory model with factor rotation 
though they are not shown here.  From the limited result of the table, the 
accuracy of the formulas of HASE is illustrated, while the relative size of 
HASE to ASE may not be substantial except for some parameters, which is due 
to the moderate sample size to have stable simulated data.  In the next section, 
we deal with a case with small sample sizes. 
 
5. An illustration with small sample sizes 

An advantage of the higher-order asymptotic standard errors over the usual 
asymptotic ones are seen more clearly in data sets with small sample sizes than 
those with large ones (note that 1HASE/ASE=1+ ( )O n− ).  In this section, we 
illustrate such cases.  The theoretical values with small sample sizes are easily 
calculated by changing the values of n.  On the other hand, we often have 
difficulty in obtaining the corresponding true or simulated values for usual 
parameter estimators in small samples due to anomalous cases such as 
non-convergence.  To avoid this instability, we use the following saturated 
model and population parameter values as an illustration 

'=Σ ΛΦΛ                                          (22) 
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with 

* * *

* *

*

1 0 0
0.2 1 0
0.1 0.2 1

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

Λ
 and 

* *

* *
1 2 3

* *

1 0 0
diag( , , ) 0 1 0

0 0 1
φ φ φ

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

Φ
, 

where the values with asterisks are fixed parameters for model identification 
and 21 31 32 1 2, , , ,λ λ λ φ φ  and 3φ  are free ones to be estimated.  The model is a 
just identified component analysis model including p full components with 
unconstrained component variances.  Note that the normal theory asymptotic 
standard errors of the free loading estimators have the asymptotic robustness 
under nonnormality when the p full components are independently distributed.  
The estimates of the parameters are given, without iterative computation, by the 
Cholesky-decomposition of a sample covariance matrix including scaling to 
satisfy (22). 

Simulations were performed using 1n N= − = 25 under normality and 
nonnormality with the same number of replications as before.  Nonnormal 
samples were given by independently uniform, t (df=9) and chi-square (df=10, 3 
and 1) distributed components including standardization for the components.  
It is known that the skewnesses or standardized third cumulants of the uniform, 
t (df=9) and chi-square (df=10) distributions are 0, 0 and 2 / 5  while the 
corresponding kurtoses or standardized fourth cumulants are 6 / 5, 6 / 5−  and 
6/5, respectively (see e.g., Stuart & Ort, 1994, Sections 16.3 and 16.11).  
These values give convenient comparison of the results. 

Table 2 shows the results.  No observation was discarded until 1,000,000 
samples were obtained in each simulation.  The theoretical ratios HASE/ASE 
are similar to their corresponding simulated ones.  The theoretical values of 
HASE/ASE with samples sizes other than n=25 can be easily obtained by 
noting that 2(HASE/ASE) 1−  is inversely proportional to n.  For instance 
when n is doubled, the ratio HASE/ASE for 1φ̂  under the uniform distribution 

becomes 21 {(1.0296 1) 25 / 50} 1.0149+ − × = .  The simulated ratios with 
increased sample sizes were found to be close to their corresponding theoretical 
ratios though not shown in the table. 

The ASEs of the loading estimators are unchanged irrespective of 
nonnormality, which is due to the asymptotic robustness of the estimators.  On 
the other hand, the ASEs of the component variance estimators under the 
uniform distribution are smaller than those under normality while those under 
the remaining nonnormal distributions are larger, which is expected from the 
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negative or positive kurtoses of the nonnormal distributions.  The same values 
of the ASEs of the component variance estimators under the t (df=9) and 
chi-square (df=10) distributions stem from the common kurtosis of 6/5.  The 
HASE/ASE’s for these two distributions are computationally the same.  The 
author conjectures that they are algebraically the same.  This finding suggests 
that kurtosis has greater influence on HASEs, as is known on ASEs, than 
skewness.  The largest absolute value of (HASE/ASE) 1−  is as large as 26% 
for 32λ  in the chi-squared case with df=1, whose corresponding simulated 
value is 29%.  These results are encouraging in that the higher-order 
asymptotic standard errors can have substantial improvement of approximation 
to their corresponding true standard errors in relatively small samples. 

The HASEs and ASEs in the numerical examples are given by using 
population parameters.  In practice, however, only their sample counterparts 
are available.  Considering this situation, a small simulation study under 
normality using the same model as in Table 2 was carried out with sample sizes 
n=25 and 50.  The values of HASE s and ASE s were given by using 
parameter estimates in each replication.  The number of replications was 
reduced to 100,000 due to excessive computing time required.  Table 3 shows 
the results, where m and sd stand for the means and standard deviations of the 
100,000 estimates of HASE and ASE, respectively. 

From the table, we easily see that the sd’s of ASE s are larger than the 
differences of the m’s of ASE  and HASE .  This is expected since the 
asymptotic standard errors of ASE s are of order 1( )O n− , which is 
asymptotically larger than 3/ 2( )O n−  for HASE ASE− .  That is, by asymptotic 
theory the added information in HASE  cannot be separated from the sampling 
error of ASE . 

Though this is mathematically or asymptotically true, we still have an 
advantage for HASE s.  The last column of Table 3 shows the ratios of m of 
HASE to m of ASE , which happen to be the same as the corresponding 
population values (see Table 2 when n=25).  Actually, the ratios HASE / ASE  
for all parameters are (computationally) the same as the corresponding 
population values from replication to replication in this case.  The equivalence 
of the sample and population ratios can also be algebraically shown for 
component variance estimators.  That is, 

ˆ ˆHASE( ) HASE( ) 11 , ( 1,..., )ˆ ˆASE( ) ASE( )
i i

i i

i i p
n

φ φ

φ φ
−

= = − =     (23) 
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(for derivation see the appendix). 
We find that (23) is a decreasing function of i, whose smallest value among 

the range of i for fixed p and n is 1 {( 1) / }p n− − .  This value has a lower 
bound 1/ 2n− , under the condition that S is positive definite with probability 1, 
which is attained when p=n.  With n=25, the lower bound for (23) becomes as 
small as 1/ 225 0.2− = .  In such cases, though it is an extreme one, HASE  has 
an advantage over ASE  (we see that from (A37) HASE is the exact standard 
error in this case). 
 
6. Discussion 

In the result of Section 4, the accuracy of the formulas of HASE is well 
illustrated.  Though the amount of (HASE/ASE) 1−  was not necessarily 
substantial for the parameter estimators due to the moderate sample size used, 
the example of Section 5 shows that the usual ASEs can be misleading 
especially when sample sizes are small under strong nonnormality in situations 
similar to those in Table 2.  However, we should note that the example in 
Section 5 may be exceptional in that the HASEs are exact ones, which does not 
always hold. 

We have difficulty when we estimate HASEs from a random sample with 
unknown distribution for observed variables since a HASE generally depends 
on the population moments of the observed variables up to the sixth order 
(recall (9)).  This difficulty is also shared by the usual ASEs under 
nonnormality though an ASE generally depends on the population moments up 
to the fourth order.  For HASE s and ASE s, we can use, at least in principle, 
sample moments.  However, it is known that higher-order sample moments 
tend to be unstable. 

A practical method is to choose independent normal/nonnormal 
distribution(s) with known cumulants or moments for the latent variables e.g., 
in the case of factor analysis models to give marginal (preferably joint) 
distributions similar to the sample ones of observed variables with respect to 
skewness and kurtosis.  By this method we can estimate the required 
cumulants of the observed variables without using the unstable sample 
higher-order moments though the estimates of the cumulants may be crude ones.  
The method of Mattson (1997) (see also Reinartz, Echambadi & Chin, 2002) 
may be useful to have the required skewnesses and kurtosis in the observed 
variables.  For the nonnormal distributions, the generalized gamma 
distribution (Ramberg & Schmeiser, 1974) has a convenient property in that the 
three parameters in addition to the location parameter give various 
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combinations of variances, skewnesses and kurtoses.  For a similar purpose, a 
method using the Pearson distribution system (Nagahara, 2004) is available. 

When raw observations are not available other than the corresponding 
sample covariance matrix, it is impossible to make inference under 
nonnormality since there is no information about the population moments 
higher than the second order.  Unfortunately, this sometimes happens in 
practice.  In such situation, when nonnormality is suspected, it is 
recommended to make inference using the nonnormal distributions strong 
enough with positive kurtosis among possible alternatives e.g., the chi-square 
distribution with df=1 whose standardized kurtosis is as large as 12 (note that 
the negative kurtosis as in the uniform distribution gives ASEs (and possibly 
HASEs) smaller than those under normality, which is not a conservative or safe 
choice). 

For further research, when we require the asymptotic distributions of the 
parameter estimators beyond the usual normal approximation, the standard 
method is to use asymptotic expansion e.g., Edgeworth expansion (see Hall, 
1992), where the HASEs or the higher-order variances are required when the 
two-term Edgeworth expansion is used.  Recently, the method of asymptotic 
expansion adapted to the situations with small sample sizes have been 
developed by using the saddlepoint approximation (see e.g., Goutis & Casella, 
1999; Stuart & Ort, 1994, Sections 11.13-11.17).  In the possible application 
of the saddlepoint method, the HASEs are required. 
 

Appendix 
The third-order central moments of sample variances and covariances 

The expectation of 3( )< >−s σ  or the third-order central moments of s are 
given by the following formula derived by Kaplan (1952, Equation (6); see also 
Stuart & Ort, 1994, Chapters 12 and 13) with the assumption of its existence: 

12

2

4 8

2 2

( , , ) E{( )( )( )}

1 1
( 1)

2 1 ,
( 1) ( 1)

( 1; 1; 1),

ab ab cd cd ef ef

abcdef abce df

ace bdf ac be df

K ab cd ef s s s

K K K
N N N

N K K K K K
N N N

p a b p c d p e f

σ σ σ≡ − − −

= +
−

−
+ +

− −
≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

∑

∑ ∑       (A1) 

where abcdefK  is the sixth-order multivariate cumulant for the variables 

, ,...,a b fX X X ; ,abce aceK K  and dfK  are similarly defined; and 
12 4

,∑ ∑  and 
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8

∑  denote the sums of the associated terms, whose numbers are given over 

the symbol, where the symmetric property of the cumulants with respect to the 
variables concerned is to be considered.  The cumulants on the right-hand side 
of (A1) are expressed by moments as 

15 10 15

2 ,

( ),
, ,

( ( , , , , , ) 1).

abcdef abcdef abcd ef abc def ab cd ef

abcd abcd ab cd ac bd ad bc

abc abc ab ab

K

K
K K
p a b c d e f

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ
σ σ

= − − +

= − + +
= =

≥ ≥

∑ ∑ ∑

 (A2) 

The exact third-order central moments of sample variances and covariances 
using moment expression are given by inserting (A2) into (A1).  However, the 
result is involved.  An asymptotically equivalent result accurate up to order 

2( )O n−  is given as follows.  Substituting (A2) for (A1), we have 
15 10 15

2

12 4 8

3

( , , ) { 2 ,

( ) }

( ), ( 1; 1; 1).

abcdef abcd ef abc def ab cd ef

abce ab ce ac be ae bc df ace bdf ac be df

K ab cd ef n

O n p a b p c d p e f

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ

−

−

= − − +

+ − − − + +

+ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

∑ ∑ ∑

∑ ∑ ∑ (A3) 

In (A3), 

 
15 12

( )abcd ef abce df abcd ef abef cd cdef abσ σ σ σ σ σ σ σ σ σ− + = − + +∑ ∑ ,                

  

10 4

( ).

abc def ace bdf

acd bef bcd aef abc def abd cef abe cdf abf cde

σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ

− +

= − + + + + +

∑ ∑
  (A4) 

The remaining terms except abcdefσ  are summed as 
15 12 8

2 ( ) ,ab cd ef ab ce ac be ae bc df ac be dfσ σ σ σ σ σ σ σ σ σ σ σ σ− + + +∑ ∑ ∑  (A5) 

which is written as 2( ) (2 3 ) 2A B C A B B C+ + − + + = , where A is the sum of 
the six products whose subscripts for two factors among the three factors in 
each product are chosen from different two pairs in (a, b), (c, d) and (e, f) (e.g., 

ab ce dfσ σ σ ) without repetition; B is the sum of the eight products whose 
subscripts for the three factors in each product are given from the different three 
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pairs in (a, b), (c, d) and (e, f) (e.g., ac be dfσ σ σ ); and C is equal to ab cd efσ σ σ , 
which is the single product whose three factors are chosen from the same pairs 
in (a, b), (c, d) and (e, f).  That is, (A5) is equal to 2 ab cd efσ σ σ .  From 
(A3)-(A5), we have 

Lemma 1.  The asymptotic third-order central moment of ,ab cds s  and 

efs  with the assumption of its existence is 

2

3

E{( )( )( )}

(

2 ) ( ),

( 1; 1; 1).

ab ab cd cd ef ef

abcdef abcd ef abef cd cdef ab

acd bef bcd aef abc def abd cef

abe cdf abf cde ab cd ef

s s s

n

O n

p a b p c d p e f

σ σ σ

σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

−

−

− − −

= − − −

− − − −

− − + +

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

      (A6) 

When the multivariate normality for observed variables holds, we have the 
following result. 

Lemma 2.  Under the assumption of multivariate normality, the 
third-order central moment of ,ab cds s  and efs  is 

2

E{( )( )( )}

{( ) ( )

( ) ( ) },

( 1; 1; 1).

ab ab cd cd ef ef

fa bc fb ac de fa bd fb ad ce

ea bc eb ac df ea bd eb ad cf

s s s

n

p a b p c d p e f

σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

−

− − −

= + + +

+ + + +

≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥

    (A7) 

Proof 1.  When the multivariate normality holds, the cumulants higher 
than the second-order in (A1) vanish, which gives (A7) with ab abK σ= .  
Q.E.D. 

Note that the eight terms in (A7) comprise of the combinations of different 
three covariances in which each covariance should be for the variables from 
different pairs of (a, b), (c, d) or (e, f). 

Lemma 2 is also proved without using Kaplan’s (1952) result as follows. 
Proof 2.  For a typical element of the third-order central moment, we have 
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E{( )( )( )}

E( ) E( ) E( ) E( )

2 ,

( 1; 1; 1).

ab ab cd cd ef ef
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    (A8) 

Noting that abn s  is written as the sum of n independently distributed products 
of the deviations from means for the associated variables aX  and bX  when 
multivariate normality holds (see e.g., Anderson, 1984, Theorem 3.3.2), we 
have 

2E( ) ( 1)ab cd abcd ab cdn s s n n nσ σ σ= + −               (A9) 
which gives 

1 1E( ) (1 ) ,
( 1; 1).

ab cd abcd ab cds s n n
p a b p c d

σ σ σ− −= + −

≥ ≥ ≥ ≥ ≥ ≥                 (A10) 

The remaining expected term in (A8) is given in a similar manner as 
3E( ) ( 1)( )

( 1)( 2) ,

( 1; 1; 1).
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From (A11), 
2 1 1

1 1

E( ) (1 )( )

(1 )(1 2 ) ,
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(A12) 

Substituting (A10) and (A12) for (A8), we have 

2 1 1 1

1 1 1
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(A13) 

For abcdσ  in (A13),  under the normality assumption, it is well known 
that 

 .abcd ab cd ac bd ad bcσ σ σ σ σ σ σ= + +             (A14) 
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For abcdefσ  in (A13), we can use the moment generating function of the 

multivariate normal distribution exp( ' / 2)t Σ t  with ( , , , , , ) 'a b c d e ft t t t t t=t  
and the relationship: 

6

2 36
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1 1 1 1 11 ' ' ' ... |
2 2 2 6 2
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(A15) 

Note that the above 15 6 2 4 2 2 2( / 3! 5 3 1)C C C= = × ×  terms comprise of the 
combinations of different three covariances of different (in notation) variables 
in the six variables.  Since the result of (A15) may seem intractable, the 
corresponding matrix expression, if necessary, is available using the 
symmetrizer or symmetric tensor (see Holmquist, 1988; Kano, 1997).  
Replacing , ,abcdef cdef abefσ σ σ  and abcdσ  in (A13) by the corresponding 
results of (A14) and (A15) yields (A7).  Q.E.D. 

A similar result of Lemma 2 is given by Siotani, Hayakawa & Fujikoshi 
(1985, Problem 4.3.4, p.183) with an added term 3/ 2( )O n−  without proof.  We 
find that the added term can be omitted. 
 
The fourth-order central moments of sample variances and covariances 

The exact fourth-order central moments of sample variances and 
covariances can be given by using the result of Kaplan (1952, Equation (9)), 
which is summarized as 

3
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(A16) 

where ( , , , )K ab cd ef gh  is the fourth-order multivariate cumulant of 
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, ,ab cd efs s s  and ghs ; and ( , )K ab cd  is the second-order bivariate cumulant 
of abs  and cds  i.e., 

( , ) E{( )( )}
1 1 ( )

1
1 1( ) ( ),

1
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(A17) 

(see e.g., Kaplan, 1952, Equation (3)).  Though the explicit expression of 
3( )O n−  in (A16) is available, it is involved.  We note, however, that the terms 

in braces on the right-hand side of (A16) is of order 2( )O n−  with 
1 2 1 2

,( , ) ( ) ( ) ( ),abcd ab cd ab cdK ab cd n O n n O nσ σ σ ω− − − −= − + = +  (A18) 
which gives 

Lemma 3.  The fourth-order central moment of , ,ab cd efs s s  and ghs  up 
to order 2( )O n−  with the assumption of its existence is 
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Since ( )ab abn s σ− , ( )cd cdn s σ− , ( )ef efn s σ−  and ( )gh ghn s σ−  
are asymptotically normally distributed, the fourth-order central moments of 
these terms are given from the asymptotic covariances between the terms as 
follows: 
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     (A20) 

which gives the equivalent expression of (A19). 
 
The partial derivatives of the discrepancy function for the MLE 

Let 
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ˆˆ ˆ ˆ'G F= + ξ h  and 
1ˆ ˆˆ log | ( ) | tr{ ( ) }F p−= + −Σ θ Σ θ S   (A21) 

with. ˆˆˆ ( , ' ') '=η θ ξ  
Then, the nonzero second partial derivatives evaluated at population values are 
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where abδ  is the Kronecker delta. 
For the nonzero third partial derivatives, noting 
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where 1 1ˆˆ { ( )}− −=Σ Σ θ , we have 
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− − −

− − − −

− −

⎛∂ ∂ ∂ ∂
= −⎜⎜∂ ∂ ∂ ∂ ∂ ∂⎝

∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂

⎞∂ ∂
+ ⎟⎟∂ ∂ ∂ ⎠

Σ Σ ΣΣ Σ Σ

Σ Σ Σ ΣΣ Σ Σ Σ

Σ ΣΣ Σ
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3 2
1 1 1 1 1

1 1 1 (2 ),

( , , 1,..., ; 1),

i j ab i j j i

ab
i j ab

G

i j k q p a b

θ θ σ θ θ θ θ

δ
θ θ

− − − − −

− − −

⎛∂ ∂ ∂ ∂
= − +⎜⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝

⎞∂ ∂
+ −⎟⎟∂ ∂ ⎠

= ≥ ≥ ≥

Σ Σ ΣΣ Σ Σ Σ Σ

Σ ΣΣ Σ Σ
     (A27) 

23

, ( , 1,..., ; 1,..., ).k

i j k i j

hG i j q k r
θ θ ξ θ θ

∂∂
= = =

∂ ∂ ∂ ∂ ∂           (A28) 

For the nonzero fourth partial derivatives, we note 
3 2
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which yields 
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34

, ( , , 1,..., ; 1,..., ),l

i j k l i j k

hG i j k q l r
θ θ θ ξ θ θ θ

∂∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂        (A32) 
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where ( )ab ba+⋅  is the sum of the (a, b)th and (b, a)th elements of the argument 
matrix. 

For zero partial derivatives, we note 

, , ( 2),

, ( 2; 1),
'

, ( 1; 1),
'

u

vu

vu

G G u

G u v

G u v

< >

< >< >

< >< >
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= = ≥⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂
= ≥ ≥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞∂ ∂
= ≥ ≥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

0 0
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O
ξ θ

O
ξ σ

             (A33) 

which hold, if they exist, irrespective of types of estimators because of the 
linear property of G in terms of the Lagrange multipliers (we do not consider 
the unusual case of ( )h θ  including s), and similarly 

, ( 2), , ( 2; 1)
'

u u v

G u G u v
< > < > < >

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= ≥ = ≥ ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0 O
σ σ θ  (A34) 

due to the linear property of G for the MLEs with respect to s. 
 

The equivalence of the sample and population HASE/ASE ratios in a 
component model under normality 

Let S be the p p×  sample counterpart of (22).  Then, from the property 
of the Cholesky decomposition, we have 

2
1 11 2 22 21 11 22 1

2 2
31 32 21 31 11

3 33 33 122
11 22 21 11

ˆ ˆ, ( / ) ,

{ ( / )}ˆ ,
( / )

s s s s s

s s s s ss s
s s s s

φ φ

φ

⋅

⋅

= = − ≡

−
= − − ≡

−
      (A35) 

which can be generalized as 12...( 1)
ˆ , ( 1,..., )i ii is i pφ ⋅ −= =  with 11 0 11s s⋅ ≡ , 

where 12...( 1)ii is ⋅ −  is the sample residual variance of the i-th variable after 
removing the variation of the variables with indexes 1, 2,..., ( 1)i − . 

Let 

12...( 1) 12...( 1)
12...( 1)

12...( 1)

ˆ , ( 1,..., ),ii i ii i
i ii i

ii i

n s
s i p

n
σ

φ
σ

⋅ − ⋅ −
⋅ −

⋅ −

= = =      (A36) 
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where 12...( 1) , ( 1,..., )ii i i pσ ⋅ − =  are the population values of (A36).  Then, it 

is known that under normality 12...( 1) 12...( 1)/ii i ii in s σ⋅ − ⋅ −  is chi-square distributed 
with 1df n i N i= − + = −  (see Anderson, 1984, Theorem 4.3.4).  From this 
result with (A36), we have the exact variance: 

2
12...( 1)

2

2
12...( 1)2

ˆvar( ) 2( 1)

1 1 2 , ( 1,..., ).

ii i
i

ii i

n i
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i i p
n n

σ
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σ

⋅ −

⋅ −

= − +

−⎛ ⎞= − =⎜ ⎟
⎝ ⎠

        (A37) 

The corresponding usual asymptotic variance is given as 1 2
12...( 1)2 ii in σ−
⋅ − .  Note 

that in the numerical example with (22), 
2

12...( 1)ii iσ ⋅ − ’s were set to one, which 

gives 1ˆASE( ) 25 2 .2828iφ
−= ×  in Table 2.  From (7) and (A37), the term 

2ˆavar( ; )i nφ −Δ  is given as 
2 1

2
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ˆ ˆ ˆavar( ; ) var( ) avar( ; )

1 2 , ( 1,..., ).

i i i
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n n

i i p
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⋅ −

Δ = −

−
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Consequently, we have 

2

ˆ ˆHASE( ) HASE( )
ˆ ˆASE( ) ASE( )

1 1 1 1/ 1 , ( 1,..., ).

i i

i i

i i i p
n n n n

φ φ

φ φ
=

− −
= − = − =

      (A39) 

It is seen that the values 1.000, .9798 and .9592 for HASE/ASE and 

HASE / ASE  of ˆ
iφ ’s under normality in Tables 2 and 3 are given also from 

(A39) with n=25. 
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Table 1. Higher-order errors of the confirmatory oblique factor 
model for unstandardized variables under normality/nonnormality 
(N=300; Number of replications=1,000,000) 

 Chi-square (df) 
 Normal (3) (1) 
 ASE  HASE ASE  HASE ASE  HASE 

1ψ  

2ψ  

3ψ  

4ψ  

5ψ  

6ψ  

 1.673 1.675
 2.500 2.523
 4.114 4.183
 2.027 2.030
 2.886 2.905
 4.380 4.429

 2.671 2.664
 3.329 3.339
 4.720 4.771
 3.164 3.156
 3.848 3.852
 5.124 5.153

 3.975 3.960 
 4.554 4.552 
 5.743 5.770 
 4.670 4.652 
 5.268 5.257 
 6.357 6.357 

11φ  

21φ  

22φ  

 .1345 .1354
 .0799 .0801
 .1238 .1242

 .1774 .1777
 .0986 .0988
 .1539 .1541

 .2413 .2411 
 .1281 .1283 
 .2010 .2010 

11λ  

21λ  

42λ  

52λ  

 .3364 .3410
 .4727 .4830
 .3657 .3700
 .4804 .4886

 * .3448
 * .4893
 * .3722
 * .4914

 * .3523 
 * .5017 
 * .3765 
 * .4970 

 HASE
ASE

 SD
ASE

 HASE
ASE

 SD
ASE

 HASE
ASE

 SD
ASE

 

1ψ  

2ψ  

3ψ  

4ψ  

5ψ  

6ψ  

 1.0013 1.0019
 1.0093 1.0098
 1.0167 1.0190
 1.0012 1.0028
 1.0066 1.0064
 1.0113 1.0113

 .9975 .9974
 1.0033 1.0037
 1.0108 1.0127
 .9976 .9986
 1.0012 1.0011
 1.0055 1.0058

 .9962 .9972 
 .9996 .9995 
 1.0048 1.0058 
 .9962 .9960 
 .9979 .9992 
 1.0000 1.0009 

11φ  

21φ  

22φ  

 1.0065 1.0074
 1.0035 1.0035
 1.0034 1.0041

 1.0021 1.0041
 1.0025 1.0031
 1.0015 1.0014

 .9993 1.0003 
 1.0017 1.0025 
 1.0001 1.0012 

11λ  

21λ  

42λ  

52λ  

 1.0136 1.0141
 1.0218 1.0230
 1.0117 1.0136
 1.0172 1.0184

 1.0249 1.0269
 1.0351 1.0382
 1.0177 1.0185
 1.0230 1.0232

 1.0472 1.0522 
 1.0613 1.0692 
 1.0296 1.0324 
 1.0346 1.0375 

Note. ASE=
1ˆavar( ; )i nθ −

, 1 2ˆHASE= avar( ; , )i n nθ − − , 
SD=Standard deviations from simulation. The asterisks denote that the 
corresponding normal theory asymptotic standard errors hold. 
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Table 2. Theoretical and simulated ratios of the higher-order asymptotic 
standard errors to their corresponding usual ones for the saturated model 
in normal/nonnormal samples (n=25; Number of replications=1,000,000) 

 ASE HASE
ASE

 SD
ASE

 ASE HASE
ASE

 SD
ASE

 

  Normal  Uniform 
1φ  

2φ  

3φ  

21λ  

31λ  

32λ  

 .2828 1.0000 .9997 
 .2828 .9798 .9795 
 .2828 .9592 .9600 
 .2000 1.0392 1.0434 
 .2040 1.0392 1.0417 
 .2000 1.0583 1.0652 

 .1789 1.0296 1.0296 
 .1789 1.0392 1.0327 
 .1789 1.0488 1.0363 
  * 1.0159 1.0179 
  * 1.0159 1.0184 
  * 1.0354 1.0420 

  t (df=9)  Chi-square (df=10) 
1φ  

2φ  

3φ  

21λ  

31λ  

32λ  

 .3578 .9925 .9916 
 .3578 .9644 .9669 
 .3578 .9354 .9394 
  * 1.0621 1.0623 
  * 1.0621 1.0611 
  * 1.0807 1.0854 

 .3578 .9925 .9923 
 .3578 .9644 .9674 
 .3578 .9354 .9399 
  * 1.0621 1.0651 
  * 1.0621 1.0633 
  * 1.0807 1.0878 

  Chi-square (df=3)  Chi-square (df=1) 
1φ  

2φ  

3φ  

21λ  

31λ  

32λ  

 .4899 .9866 .9862 
 .4899 .9522 .9564 
 .4899 .9165 .9267 
  * 1.1136 1.1102 
  * 1.1136 1.1113 
  * 1.1314 1.1137 

 .7483 .9827 .9803 
 .7483 .9442 .9490 
 .7483 .9040 .9215 
  * 1.2490 1.2618 
  * 1.2490 1.2585 
  * 1.2649 1.2881 

Note. ASE= 1ˆavar( ; )i nθ − , 
1 2ˆHASE= avar( ; , )i n nθ − −

, SD= 
Standard deviations from simulation, 1n N= − . The asterisks denote 
that the corresponding normal theory asymptotic standard errors hold. 
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Table 3. Means and standard deviations of the estimates of the usual and 
higher-order asymptotic standard errors for the saturated model 
in normal samples (Number of replications=100,000) 

 ASE
m sd

 HASE
m sd

 of HASE
of ASE

m
m

 

(n=25) 
1φ  

2φ  

3φ  

21λ  

31λ  

32λ  

 
 .2826 .0800 
 .2721 .0787 
 .2601 .0766 
 .2003 .0418 
 .2040 .0425 
 .1998 .0426 

 
 .2826 .0800 1.0000 
 .2666 .0771 .9798 
 .2494 .0735 .9592 
 .2081 .0434 1.0392 
 .2120 .0441 1.0392 
 .2114 .0451 1.0583 

(n=50) 
1φ  

2φ  

3φ  

21λ  

31λ  

32λ  

 
 .1997 .0399 
 .1961 .0395 
 .1918 .0392 
 .1416 .0205 
 .1442 .0208 
 .1413 .0206 

 
 .1997 .0399 1.0000 
 .1942 .0391 .9899 
 .1879 .0384 .9798 
 .1444 .0209 1.0198 
 .1471 .0213 1.0198 
 .1455 .0212 1.0296 

   Note. m and sd of ASE  and HASE =Means and standard deviations of 
   the estimates of ASE and HASE from simulation, 1n N= − . 
 


