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“Asymptotic cumulants of the minimum phi-divergence estimator for 
categorical data under possible model misspecification” 

 
Haruhiko Ogasawara 

 
 

This article supplements Ogasawara (2019a), and gives 
[0] miscellaneous issues in Section S0 with errata in Subsection S0.1 and some 
limiting results in Subsection S0.2, 

[1] the partial derivatives of θ̂  with respect to p evaluated at 0
ˆ θ θ  and 

p τ  in Section S1, 
[2] added numerical results under model misspecification in Section S2 with 
Tables S1.1 to S1.11, where the applications of the asymptotic cumulants in 
interval estimation (for interval estimation, see Section S3) are shown in Tables 
S1.9 to S1.11, 
[3] the corresponding results under correct model specification in Tables S2.1 
to S2.13. 

In the tables, “.00” indicates a rounded value of zero up to the second 
place while “0” indicates an exactly zero value. Note that Tables S2.1 to S2.13 
are not included in this supplement, but available in Ogasawara (2019b). 
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S0. Miscellaneous issues 
S0.1 Errata 

The term 
2ˆ ˆ3E[{ E( )} ]    on the right-hand side of the first equation 

for 4
ˆ( )   in (2.2) should be 

2 2ˆ ˆ3{E[{ E( )} ]}   . 

The factor 
3

3( )n κ p  on the left-hand side of the last equation for 

4
ˆ( )   in (2.2) should be 

2
3( )n κ p . 

The second duplicate inequality “ i j ” in the last line of (2.4) should be 
deleted. 

The phrase “n = 25, 200 and 800” in the fifth line of Section 3 should be 
“n = 50, 200 and 800”. 

The URLs in Ogasawara (2019a) for the supplement in the reference list of 
the published paper should be “http://www.res.otaru-uc.ac.jp/~emt-hogasa/, 
https://barrel.repo.nii.ac.jp/”. 

The URLs in Ogasawara (2019b) for the supplemental tables and R codes 
in the reference list of the published paper should be 
“http://www.res.otaru-uc.ac.jp/~emt-hogasa/, 
http://hdl.handle.net/10252/00005864”. 

 
S0.2 Some limiting results 

The limiting results after (1.4) are derived as follows: 
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S1. The partial derivatives of θ̂  with respect to p evaluated at 0
ˆ θ θ  

and p τ  
We use the following lemma. 

Lemma 1. Define 0/ ( 1,..., )i i i i K     and 
( ) *( ) ( 3, 4)i x i   as 

the third and fourth derivatives of ( )x  with respect to x at 
*x , respectively. 

Then, with the assumption of the existence of the derivatives of ( )  , 
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Proof. The results are given by direct derivation. Q.E.D. 
 

Lemma 2. With the assumption of the existence of the derivatives of ( )x  

up to the fourth order at ( 1,..., )kx k K  , 
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where e.g., 
(A) (A)
[ ]  is for ease of finding correspondence; 

2

( , )
( )

i j
  is the sum 

of two terms exchanging i and j with 
3

( , , )
( )

i j k
  defined similarly; and ij  is 

the Kronecker delta with ijk ij jk   . 

Proof. Recalling that ˆˆ /D  θ 0  with 0  being the 1q  zero vector 

and using the formulas of the partial derivatives in implicit functions (see 
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Ogasawara, 2009, Equation (A.2)), we obtain 
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Using Lemma 1, (A.3) gives (A.2) in Lemma 2. Q.E.D. 
Note that in the first equation of (A.3), 

(A) (A)
[ ] under correct model 

specification becomes 0I  since 1 ( 1,..., ), ''(1) 1, '(1) 0k k K       and 

(1) 0  . 
 
S2. Additional numerical results under model misspecification 

Table S1.1 gives the simulated and theoretical ratios i.e., Sim. = SD/ASE 
and Th. = HASE/ASE, where SD is the standard deviation from simulation, 

ASE =
1/2 1/2

2n 
 and HASE =

1 2 1/2
2 2( )n n  

 . The large simulated values 
e.g., 5.446 for Case B when n = 200 and 5.501 for Case C when n = 50 by 

2    are due to unstable results in estimation. Except the results when n = 50, 
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the values of the ratios are approximately 1.000. 
Table S1.2 shows the simulated and theoretical ( 1 ) biases multiplied by n. 

In the table, “0” indicates an exactly zero value. Again, 2    gives the 
largest biases while 0   gives the smallest ones. The largest (absolute) 1  
is 4.12  for Case B when 2   , whose actual value when n = 50 is 

4.12 / 50 .08   while the corresponding ASE in Table 2 is 1.53 / 50 .22 . 
That is, the asymptotic bias is approximately 40 % of the ASE. When n 
becomes larger, the relative asymptotic bias becomes smaller since 

1 1/2 1/2 1/2
1 2/ ( )n n O n    . 

Table S1.3 gives the simulated and theoretical (
3/2

3 2/  ) skewness 

multiplied by 
1/2n . The values in the table are mostly positive. It is of interest 

to see that the largest absolute values of 
3/2

3 2/   in Cases A to C are given by 
1, 2     and 1, respectively. 

Table S1.4 shows the simulated and theoretical (
2

4 2/  ) kurtoses 
multiplied by n. The methods by 1    and 2  give unstable results when n 
= 50 and 200. 

In Table S1.5, the simulated and theoretical (
2

1 2,  ) values are shown. 

Note that the asymptotic mean square error up to order 
1( )O n

 is equal to the 

asymptotic variance 
1

2n 
 and that the value up to order 

2( )O n
 is given 

by 
1 2 2

2 1 2( )n n   
  . The simulated 2  is given by 2 2 2(SD ASE )n  . 

The table shows the contribution of 
2

1  and 2  in the added value of order 
2( )O n . It is found that on average, the relative contribution of 2

1  is much 

smaller than that of 2 . Recall that HASE/ASE when n = 200 and 800 are 

close to 1.000 in Table S1.1 indicating that the contribution of 
2

1  in 
1 2 2

2 1 2( )n n   
   is rather small. 

The results of Table S1.6 to S1.8 are those for studentized M Es. Table 

S1.6 gives the simulated and theoretical (
1/2
2 ' 1  ) standard errors. The 

methods by 1    and 2  give unstable results when n = 50 and 200. When 
n = 800, the simulated values are mostly close to 1.000 with some exceptions 
e.g., 1.034 for Case B by 2   . 

Table S1.7 shows the simulated and theoretical ( 1 ' ) biases of the 

studentized M Es multiplied by 
1/2n . Most of the values are negative. The 
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method by 1    gives unstable results when n = 50. The largest absolute 

1 '  is given by 2   for Case A yielding 
1/2

1 ' 1.20 / 50 .17n      
when n = 50 which is approximately 20% of the unit ASE. 

Table S1.8 gives the simulated and theoretical ( 3 ' ) skewnesses 

multiplied by 
1/2n  for the studentized M Es. The values are mostly negative. 

Recall that the corresponding results for the non-studentized M Es are mostly 
positive. This type of sign reversal typically happens after studentization. The 
methods by 1    and 2  give unstable results when n = 50 or 200. The 
values by 0, 2 / 3, 1   and 2 in Table S1.8 seem to be larger than those of 
the corresponding absolute values in Table S1.3. 

The corresponding numerical results under correct model specification are 
given in Tables S2.1 to S2.10 of Ogasawara (2019b), where 0π ’s in Cases A, B, 

C and D are given by 0 = .4, 1, 1.5 and 0 (1.5, .3549) 'θ , respectively. Note 

that 0π  in Case C is the same as that in Case D. Though there are differences 
in the two sets of tables, the relative values among different  ’s are similar in 
a crude sense. 

 
S3. Applications of the asymptotic cumulants in interval estimation 

The asymptotic cumulants derived earlier can typically be used for interval 
estimation. In this section, simulations for one-sided confidence intervals are 
shown under model misspecification. Interval estimation under model 
misspecification may seem odd. However, as mentioned earlier, the population 
value corresponding to a parameter estimator is reasonably defined as that when 
infinitely many observations are available. Consequently, it is also reasonable 
to estimate the population value under model misspecification. Note that in 
many or most of the cases in practice especially in the behavioral and social 
sciences, models are approximations to reality. In these cases, estimation of the 
population value under correct model specification becomes meaningless. 
Recall, however, that the population values corresponding to M Es with 

different ( )  s, when ( E( ))τ p  is given with 0τ π  i.e., under model 
misspecification, are different from M E to M E. We use the following four 
lower endpoints in one-sided confidence intervals: 
(i) the normal approximation by the Fisher information matrix (NF) 

(1) 1/2 1 1/2ˆ ˆ{( ) }L n z     I ,                    (A.4) 
(ii) the normal approximation by the robust ASE estimate (NR) 

(2) 1/2 1/2
2

ˆ ˆL n z   ,                         (A.5) 
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(iii) the Cornish-Fisher expansion denoted by C-F (see Ogasawara, 2012, 
Equation (2.5)) 

(3) 1/2 1/2 1 1/2 2
2 2 1 3

ˆ ˆ ˆ ˆ ˆ{ ' ( '/ 6)( 1)}L n z n z                 (A.6) 
and (iv) Hall’s (1992) monotonic transformation with bias correction before 
cubic transformation denoted by Hall (see Ogasawara, 2012, Theorem 4) 

1/3
1/2

(4) 1 1/2 1/2 13 32
2 1

3

ˆ ˆˆ ' '6ˆ ˆ ˆ ' 1 1
ˆ 2 6'

L n n z n
   


  

                  
,  (A.7) 

where ̂  is an M E; Î  is a sample version of the Fisher information matrix 

per observation; ( )  indicates the diagonal element of a matrix 

corresponding to ̂ ; 
2(1/ 2 ) exp( / 2) d

z
z z

 
 

  ; 
1/2 1/2

2
ˆn 

 is a sample 

version of the robust ASE under possible model misspecification (see (2.2)); 

and 1̂ '  and 3
ˆ '  are sample versions of 1 '  and 3 '  (see (2.7)), 

respectively. 

It is known that 
(1)L  is invalid under model misspecification but is 

included for comparison while 
(2) 1/2

0Pr( ) ( )L O n     ,                    (A.8) 
and when we neglect the discreteness of a categorical variable, we have 

( ) 1
0Pr( ) ( ) ( 3, 4)iL O n i      .              (A.9) 

Simulations for interval estimations are performed. Tables S1.9 to S1.11 
show selected results when n = 50 with 2   (Neyman’s statistic), 2/3 (the 
Cressie-Read statistic) and 2 for the proportions of a population value below the 
one-sided confidence intervals given by (A.4) to (A.7) with the number of 
replications being 10,000. the values of Z (the number of deleted cases with 
zero frequencies or empty cells) and NC (the number of deleted cases due to 
no-convergence) defined as before have been reduced due to the reduced 
number of replications. 

In the tables, the results by NF look similar to those by NR in many points 
in a crude sense. However, when we look at the tables carefully, we find that 
NR improves NF as is expected. For instance, in Table S1.9 for Case B 
when .1000 is a nominal value, the corresponding proportions by NF and NR 
are .2077 and .1146, respectively. While among the results by NF, NR, C-F and 
Hall, no method gives best results under all conditions, overall C-F and Hall 
seem to give improvements over NF and NR. 

The results for the confidence intervals under correct model specification 
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are also available in Tables S2.11 to S2.13 of Ogasawara (2019b). The 
confidence intervals are constructed in the same manners as those under model 

misspecification except that 1̂ '  and 3
ˆ '  are given from the formulas of 1 '  

and 3 '  under correct model specification, respectively. Note that 2̂  is 
given by the robust ASE estimate even under correct model specification. 

 
 

Table S1.1. Simulated and theoretical ratios of the higher- and lower-order asymptotic standard 
errors for the M Es when models are misspecified 

Case     n     50         200        800          50        200         800                      

 Parameter   Sim.  Th.   Sim.  Th.  Sim.  Th.    Sim.  Th.   Sim.  Th.   Sim.  Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       .933 1.013 .997 1.003 1.007 1.001 .969 1.037 1.003 1.009 1.007 1.002 

B       .986 .939 1.001 .985 1.003 .996 .700 1.003 1.015 1.001 1.005 1.000 

C       1.010 .964 1.000 .991 1.001 .998 1.144 1.008 1.010 1.002 1.003 1.001 
D    1   .992 .984 1.002 .996 .999 .999 1.017 1.006 1.008 1.001 1.000 1.000 
     2   .973 .991 1.002 .998 1.001 .999 .985 1.004 1.004 1.001 1.001 1.000 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       .992 1.082 1.015 1.021 1.007 1.005 .922 1.001 .995 1.000 1.007 1.000 

B       .707 1.244 5.446 1.066 .987 1.017 .990 .945 1.001 .987 1.003 .997 

C       5.501 1.101 1.032 1.026 1.008 1.007 .994 .946 .996 .987 1.000 .997 
D    1   1.417 1.029 1.014 1.007 1.002 1.002 .979 .971 .999 .993 .998 .998 
     2   1.001 1.017 1.007 1.004 1.002 1.001 .966 .983 1.000 .996 1.000 .999 

    = 1 (X2, Pearson)                        = 2 

A       .918 .995 .993 .999 1.006 1.000 .908 .980 990 .995 1.006 .999 

B       .991 .948 1.001 .987 1.003 .997 .995 .957 1.002 .990 1.003 .997 

C       .987 .939 .994 .985 1.000 .996 .973 .920 .990 .981 .999 .995 
D    1   .974 .964 .998 .991 .998 .998 .963 .948 .994 .987 .997 .997 
     2   .963 .979 .999 .995 1.000 .999 .956 .967 .997 .992 .999 .998 

Note. n = the number of observations, Sim. = simulated value = SD/ASE, SD = the standard 
deviation from simulation, ASE = 1/2 1/2

2n  , Th. = theoretical value = HASE/ASE, 

HASE= 1 2 1/2
2 2( )n n  

 , G2 = the log-likelihood ratio statistic, GM2 = the modified log-likelihood 

ratio statistic, Neyman = Neyman’s statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s 

statistic. 
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Table S1.2. Simulated and theoretical biases multiplied by n for the M Es when models are 

misspecified: 1  

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       .54 .01 .05 0 .83 .22 .28 .20 

B       .41 .20 .06 .11 2.26 -.45 -.66 -.76 

C       .18 .25 .07 .04 .04 .12 -.08 -.15 
D    1   .85 .51 .26 .00 1.26 .88 .62 .36 
     2   .07 .06 -.03 -.04 .14 .12 .03 .02 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       1.06 .20 .30 .17 .40 -.12 -.09 -.14 

B       4.84 1.39 -2.26 -4.12 .38 .20 .08 .15 

C       1.61 -.39 -.60 -.70 .15 .21 .04 .02 
D    1   1.80 1.25 .97 .70 .59 .27 .02 -.24 
     2   .21 .19 .09 .08 .02 .02 -.07 -.08 

    = 1 (X2, Pearson)                        = 2 

A       .34 -.18 -.15 -.19 .22 -.30 -.29 -.32 

B       .35 .17 .06 .13 .26 .08 -.02 .05 

C       .11 .16 -.00 -.02 -.04 -.05 -.21 -.22 
D    1   .47 .15 -.10 -.36 .12 -.21 -.47 -.72 
     2   .00 -.00 -.09 -.10 -.05 -.06 -.16 -.17 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 1 , G2 = the 

log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = Neyman’s 

statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic. The “0” indicates an exactly zero 

value. 
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Table S1.3. Simulated and theoretical skewnesses multiplied by 1/2n  for the M Es when models 

are misspecified: 3/2
3 2/   

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       3.28 1.89 1.72 1.66 4.92 3.54 3.35 3.42 

B       2.46 2.16 2.80 1.63 159.3 1.09 1.87 -.31 

C       1.41 1.53 1.57 .67 131.2 1.41 1.52 .41 
D    1   2.55 2.06 2.11 .02 2.75 2.09 2.11 .01 
     2   2.33 1.39 1.79 1.31 2.41 1.40 1.81 1.31 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       5.43 2.45 2.17 2.27 2.96 1.52 1.35 1.24 

B       107.0 555.4 -1.70 -10.9 2.00 1.82 2.42 1.46 

C       163.6 .53 .96 -.39 1.36 1.50 1.51 .71 
D    1   274.1 2.16 2.13 .01 2.56 2.07 2.11 .03 
     2   2.58 1.42 1.82 1.31 2.31 1.39 1.79 1.31 

    = 1 (X2, Pearson)                        = 2 

A       2.88 1.43 1.26 1.15 2.76 1.33 1.17 1.05 

B       1.82 1.66 2.24 1.34 1.46 1.29 1.83 1.01 

C       1.35 1.47 1.47 .72 1.31 1.39 1.35 .68 
D    1   2.59 2.07 2.11 .03 2.70 2.10 2.12 .04 
     2   2.30 1.39 1.78 1.31 2.31 1.40 1.77 1.31 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 3/2
3 2/  , G2 

= the log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = 

Neyman’s statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic. 
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Table S1.4. Simulated and theoretical kurtoses multiplied by n  for the M Es when models are 

misspecified: 2
4 2/   

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       -.7 2.7 21.0 2.1 25.3 14.8 22.0 12.6 

B       5.1 8.0 5.2 -21.8 2.6e4 17.1 21.3 -13.7 

C       4.2 4.3 7.9 -14.5 1.1e5 5.5 9.5 -12.7 
D    1   12.4 13.3 15.0 -7.8 17.6 13.7 15.1 -9.5 
     2   -2.6 3.6 14.0 .4 -1.4 3.6 13.9 -1.0 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       48.2 21.3 29.7 25.7 -5.0 -1.4 19.7 -1.4 

B       1.2e4 3.2e5 -35.5 251.0 3.4 7.3 .1 -18.8 

C       2.8e4 19.5 18.4 -.5 4.0 4.2 7.0 -14.7 
D    1   1.7e5 15.0 15.4 -11.2 12.7 13.3 15.0 -6.7 
     2   2.7 3.8 13.8 -2.4 -2.8 3.7 14.0 1.3 

    = 1 (X2, Pearson)                        = 2 

A       -6.0 -2.6 18.9 -2.5 -7.6 -4.7 16.6 -4.5 

B       2.9 7.2 -1.5 -17.9 2.1 7.1 -4.0 -15.7 

C       3.9 4.2 6.6 -14.7 3.5 4.1 5.1 -15.0 
D    1   13.0 13.3 15.0 -6.2 13.9 13.4 15.0 -4.5 
     2   -2.7 3.7 14.1 1.8 -2.5 3.9 14.2 3.2 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 2
4 2/  , G2 = 

the log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = 
Neyman’s statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic, e 10yx y x . 
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Table S1.5. Simulated and squared biases and added higher-order asymptotic biases multiplied by 
2n  for the M Es when models are misspecified: 2

1  and 2  

                       2
1                                  2  

                                                                             

Case                Sim.(n)                            Sim.(n)                 
 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)  Th.= 2  

    = -2 (Neyman) 

A       1.11 .04 .09 .03 -.4 3.0 5.5 4.2 

B       23.47 1.94 5.12 16.98 5731 1.3e4 -47.1 64.0 

C       2.60 .15 .36 .49 2660 23.7 22.4 19.3 
D    1   3.24 1.56 .94 .49 86.5 10.0 4.8 5.1 
     2   .05 .04 .01 .01 .0 .4 .5 .3 

    = 2/3 (C-R) 

A       .16 .02 .01 .02 -2.7 -.8 3.8 .02 

B       .14 .04 .01 .02 -.9 .3 4.2 -4.7 

C       .02 .04 .00 .00 -1.1 -2.9 .4 -8.9 
D    1   .35 .07 .00 .06 -3.6 -.6 -5.6 -5.0 
     2   .00 .00 .01 .01 -.5 .0 .0 -.3 

    = 2 

A       .05 .09 .08 .10 -3.5 -1.6 3.5 -.8 

B       .07 .01 .00 .00 -.4 .6 4.5 -3.4 

C       .00 .00 .04 .05 -4.4 -6.7 -2.6 -12.8 
D    1   .02 .05 .22 .52 -6.3 -4.0 -9.3 -8.8 
     2   .00 .00 .02 .03 -.7 -.2 -.2 -.5 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 2
1  or 2 , 

Neyman = Neyman’s statistic, C-R = the Cressie-Read statistic, e 10yx y x . 
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Table S1.6. Simulated and theoretical standard errors of the studentized M Es when models are 

misspecified: 1/2
2 '  

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       .940 1.025 1.014 1 .930 1.032 1.014 1 

B       1.011 1.010 1.004 1 1.4e8 1.008 1.002 1 

C       1.036 1.005 1.002 1 4.1 1.006 1.002 1 
D    1   .982 1.003 .999 1 .978 1.002 .999 1 
     2   1.009 1.017 1.004 1 1.007 1.017 1.004 1 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       .874 .997 1.002 1 .945 1.025 1.014 1 

B       15.9 11.6 1.034 1 1.012 1.008 1.004 1 

C       10.9 .999 1.000 1 1.029 1.004 1.002 1 
D    1   1.676 1.001 .999 1 .981 1.003 .999 1 
     2   1.005 1.016 1.004 1 1.008 1.017 1.004 1 

    = 1 (X2, Pearson)                        = 2 

A       .948 1.026 1.014 1 .955 1.027 1.015 1 

B       1.012 1.007 1.004 1 1.010 1.005 1.004 1 

C       1.026 1.003 1.002 1 1.017 1.001 1.002 1 
D    1   .981 1.003 .999 1 .986 1.002 .999 1 
     2   1.008 1.017 1.004 1 1.007 1.017 1.004 1 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 1/2
2 ' =1, G2 

= the log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = 
Neyman’s statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic, e 10yx y x . 
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Table S1.7. Simulated and theoretical biases multiplied by 1/2n  for the studentized M Es when 

models are misspecified: 1 '  

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       .28 -.85 -.76 -.83 .43 -.93 -.79 -.90 

B       -.40 -.62 -.76 -.59 2.2e7 -.88 -1.08 -.67 

C       -.44 -.36 -.50 -.28 -.42 -.42 -.58 -.31 
D    1   .00 -.28 -.46 -.01 .28 -.00 -.19 .27 
     2   -.53 -.58 -.80 -.76 -.37 -.42 -.64 -.60 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       .74 -.48 -.31 -.47 .06 -.99 -.91 -.96 

B       6.39 2.90 -.94 .81 -.33 -.52 -.64 -.52 

C       2.42 -.55 -.75 -.42 -.46 -.39 -.52 -.32 
D    1   .57 .25 .07 .53 -.21 -.47 -.65 -.19 
     2   -.22 -.27 -.49 -.45 -.64 -.68 -.91 -.87 

    = 1 (X2, Pearson)                        = 2 

A       -.04 -1.06 -.99 -1.04 -.25 -1.24 -1.18 -1.20 

B       -.32 -.50 -.61 -.50 -.31 -.48 -.58 -.49 

C       -.49 -.42 -.55 -.36 -.59 -.57 -.68 -.52 
D    1   -.32 -.57 -.75 -.28 -.66 -.87 -1.03 -.57 
     2   -.69 -.74 -.96 -.92 -.86 -.90 -1.12 -1.08 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 1 ' , G2 = the 

log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = Neyman’s 
statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic, e 10yx y x . 
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Table S1.8. Simulated and theoretical skewnesses multiplied by 1/2n  for the studentized M Es 

when models are misspecified: 3 '  

Case                Sim.(n)                            Sim.(n)                 

 Parameter    (50)    (200)    (800)    Th.        (50)    (200)    (800)     Th. 

    = 0 (G2, ML)                        = -1 (GM2) 

A       -.01 -3.60 -3.46 -3.32 -.45 -4.55 -4.42 -4.15 

B       -2.45 -2.89 -2.11 -2.57 323 -1.82 -.95 -.17 

C       -2.19 -1.85 -1.77 -1.17 2024 -1.69 -1.57 -.76 
D    1   -1.49 -2.01 -1.88 -.28 -1.48 -2.00 -1.87 -.01 
     2   -1.44 -3.16 -2.57 -2.63 -1.45 -3.17 -2.56 -2.62 

    = -2 (Neyman)                        = 2/3 (C-R) 

A       1.17 -1.88 -2.17 -2.04 -.02 -3.47 -3.29 -3.17 

B       110 578 .13 10.11 -2.48 -2.66 -1.92 -2.57 

C       178 -1.02 -.89 .20 -2.20 -1.87 -1.80 -1.30 
D    1   506 -2.06 -1.88 .00 -1.66 -2.05 -1.90 -.04 
     2   -2.04 -3.20 -2.56 -2.62 -1.47 -3.16 -2.58 -2.63 

    = 1 (X2, Pearson)                        = 2 

A       -.06 -3.46 -3.26 -3.15 -.20 -3.49 -3.24 -3.13 

B       -2.44 -2.54 -1.81 -2.49 -2.28 -2.22 -1.53 -2.24 

C       -2.22 -1.87 -1.80 -1.34 -2.35 -1.88 -1.79 -1.39 
D    1   -1.78 -2.08 -1.91 -.04 -2.37 -2.20 -1.95 -.06 
     2   -1.49 -3.17 -2.58 -2.63 -1.57 -3.19 -2.60 -2.63 

Note. n = the number of observations, Sim. = simulated value, Th. = theoretical value = 3 ' , G2 = the 

log-likelihood ratio statistic, GM2 = the modified log-likelihood ratio statistic, Neyman = Neyman’s 

statistic, C-R = the Cressie-Read statistic, X2 = Pearson’s statistic. 
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Table S1.9. Proportions of a population value below the one-sided confidence intervals under model 

misspecification: n = 50 and 2    (Neyman’s statistic) 

Case 

Parameter 

     Method 

     

   Nominal values 

 .0050 .0250 .1000 .5000 .9000 .9750 .9950 

A    

NF 

NR 

C-F 

Hall 

  Z = 50, NC = 939 

 .0108 .0344 .1118 .5366 .8841 .9476 .9659 

 .0028 .0173 .0902 .5366 .9569 .9971 1.0000 

 .0016 .0222 .1026 .5433 .9513 .9975 1.0000 

 .0016 .0218 .1010 .5452 .9515 .9975 1.0000 

B    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 334 

 .0383 .0933 .2077 .4655 .7081 .7927 .8573 

 .0081 .0303 .1146 .4655 .8614 .9346 .9761 

 .0118 .0352 .1089 .5136 .8805 .9503 .9781 

 .0104 .0352 .1089 .5103 .8805 .9880 .9967 

C    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 22 

 .0086 .0340 .1228 .4774 .8193 .9128 .9608 

 .0032 .0202 .0877 .4774 .8763 .9591 .9878 

 .0021 .0181 .0834 .5034 .8911 .9664 .9892 

 .0021 .0180 .0831 .5013 .8924 .9691 .9926 
D  1  

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 349 

 .0045 .0264 .1087 .5526 .9071 .9757 .9947 

 .0019 .0181 .0973 .5526 .9145 .9769 .9960 

 .0004 .0102 .0835 .5013 .9143 .9767 .9969 

 .0003 .0102 .0835 .5013 .9143 .9767 .9970 
  2  

NF 

NR 

C-F 

Hall 

 

 .0029 .0205 .0907 .5100 .8776 .9629 .9908 

 .0020 .0167 .0859 .5100 .8829 .9641 .9924 

 .0026 .0214 .0959 .5120 .9150 .9884 .9998 

 .0023 .0211 .0953 .5120 .9194 .9976 1.0000 

Note. NF = the normal approximation by the Fisher information matrix, NR = the normal 

approximation by the robust ASE estimate, C-F = the Cornish-Fisher expansion, Hall = Hall’s (1992) 

monotonic cubic transformation, Z = the number of deleted cases with zero frequenc(ies), NC = the 

number of deleted case(s) due to non-convergence. 
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Table S1.10. Proportions of a population value below the one-sided confidence intervals under 

model misspecification: n = 50 and 2 / 3   (the Cressie-Read statistic) 

Case 

Parameter 

     Method 

     

   Nominal values 

 .0050 .0250 .1000 .5000 .9000 .9750 .9950 

A    

NF 

NR 

C-F 

Hall 

  Z = 50, NC = 939 

 .0008 .0077 .0526 .5181 .9442 .9982 1.0000 

 .0034 .0214 .0874 .5181 .9012 .9806 1.0000 

 .0034 .0253 .1049 .5352 .9500 1.0000 1.0000 

 .0033 .0252 .1049 .5352 .9557 1.0000 1.0000 

B    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 334 

 .0027 .0252 .1144 .5105 .8538 .9447 .9792 

 .0016 .0130 .0887 .5105 .8786 .9588 .9828 

 .0017 .0171 .1007 .5221 .9012 .9762 .9971 

 .0014 .0171 .1007 .5221 .9012 .9839 .9992 

C    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 22 

 .0026 .0209 .0968 .4955 .8760 .9575 .9861 

 .0025 .0183 .0904 .4955 .8812 .9585 .9864 

 .0040 .0232 .1007 .4974 .8897 .9675 .9911 

 .0039 .0229 .1006 .4974 .8898 .9686 .9923 
D  1  

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 349 

 .0019 .0160 .0831 .4956 .9030 .9727 .9947 

 .0019 .0155 .0880 .4956 .9048 .9683 .9930 

 .0020 .0153 .0919 .5273 .9056 .9748 .9964 

 .0013 .0151 .0919 .5273 .9056 .9748 .9964 
  2  

NF 

NR 

C-F 

Hall 

 

 .0016 .0147 .0778 .4875 .8733 .9576 .9894 

 .0017 .0145 .0787 .4875 .8728 .9587 .9892 

 .0040 .0246 .1012 .5099 .9058 .9878 1.0000 

 .0038 .0241 .0991 .5099 .9074 .9953 1.0000 

Note. NF = the normal approximation by the Fisher information matrix, NR = the normal 

approximation by the robust ASE estimate, C-F = the Cornish-Fisher expansion, Hall = Hall’s 

(1992) monotonic cubic transformation, Z = the number of deleted cases with zero frequenc(ies), 

NC = the number of deleted cases due to non-convergence. 
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Table S1.11. Proportions of a population value below the one-sided confidence intervals under 

model misspecification: n = 50 and 2   

Case 

Parameter 

     Method 

     

   Nominal values 

 .0050 .0250 .1000 .5000 .9000 .9750 .9950 

A    

NF 

NR 

C-F 

Hall 

  Z = 50, NC = 939 

 .0010 .0080 .0529 .4978 .9313 .9960 .9999 

 .0033 .0196 .0821 .4978 .8886 .9748 .9996 

 .0040 .0264 .1036 .5321 .9451 1.0000 1.0000 

 .0040 .0264 .1036 .5321 .9470 1.0000 1.0000 

B    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 334 

 .0015 .0163 .0925 .5083 8655 .9417 .9770 

 .0013 .0151 .0906 .5083 8756 .9592 .9864 

 .0020 .0190 .0958 .5083 .8997 .9784 .9963 

 .0020 .0190 .0958 .5083 .8997 .9813 .9980 

C    

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 22 

 .0019 .0183 .0879 .4896 .8800 .9592 .9877 

 .0022 .0156 .0828 .4896 .8806 .9586 .9847 

 .0039 .0217 .1006 .4969 .8900 .9671 .9914 

 .0038 .0216 .1006 .4969 .8909 .9713 .9931 
D  1  

NF 

NR 

C-F 

Hall 

  Z = 0, NC = 349 

 .0016 .0126 .0793 .4801 .8942 .9717 .9948 

 .0013 .0122 .0754 .4801 .8838 .9638 .9890 

 .0014 .0174 .0928 .5158 .9035 .9733 .9950 

 .0014 .0173 .0928 .5158 .9035 .9744 .9953 
  2  

NF 

NR 

C-F 

Hall 

 

 .0012 .0127 .0733 .4791 .8705 .9559 .9886 

 .0013 .0124 .0746 .4791 .8691 .9549 .9886 

 .0043 .0251 .1019 .5046 .9004 .9860 .9999 

 .0039 .0242 .1014 .5046 .9021 .9931 1.0000 

Note. NF = the normal approximation by the Fisher information matrix, NR = the normal 

approximation by the robust ASE estimate, C-F = the Cornish-Fisher expansion, Hall = Hall’s 

(1992) monotonic cubic transformation, Z = the number of deleted cases with zero frequenc(ies), 

NC = the number of deleted cases due to non-convergence. 

 

 


