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In the following, the number of distinct j ’s among ( 1,..., )j j N   is 

assumed to be sufficiently large with the largest one being N. As addressed in 
Ogasawara (2021), in the case of the 1PL-G model, 2k  is associated with the 

location indeterminacies of 
* *

ja   and 
* *

ia b . Consequently, under 
* k   , 2k  can be set to 1. Define 1var{ln( )}ae k   as the variance 

of 1ln{exp( ) } ( 1,..., )ja k j N   . Let 

min min{ ; 1,..., }j j N    with 1 mininf- exp( )k a  .       (a.1) 

Then, we have the following result. 
 
Lemma 1. In the case of the 1PL-G model, 
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   .                 (a.2) 

Proof. Let 1exp( ) ( 1,.., )j jK a k j N    and min min 1exp( )K a k  . 

Then, 
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 (a.3) 

When 1 1inf- 0k k  , by definition minln K  . Then, since 

1

1 ( min)

ln
N

m
m m

N K

 

   is finite, the last result in (a.3) goes to   Q.E.D. 

 

A.1 The results under 
* 1/2

1[var{ln( )}]aa e k   

In this section the results under 
* 1/2

1[var{ln( )}]aa e k   with 
* 0    and 

*var( ) var( ) 1    are shown. 
 

Theorem 2. Under 
* 1/2

1[var{ln( )}]aa e k   in the 1PL-G model, 
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*
min min 1ln{exp( ) }a k    
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     Proof. 
1 1

*

inf- 0
lim

k k
a

 
   is given by Lemma 1. For 

*
ib , let 

*
11/ 1/{exp( ) } ( 1,..., )j j jK K a k j N     and 

*
min min1 /K K . Denote 

1 1var{ln( )} var[ln{1 / ( )}]a ae k e k     by 
*var(ln )K . When 

1 1inf- 0k k  , we find from Lemma 1 that the denominator of 
*
ib  in the 

first paragraph of Section 4 i.e., 
* 1/2{var(ln )}K   . On the other hand, for 
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the numerator of 
*
ib , when 1 1inf- 0k k  , using minln K   and 

*
minln K  , we have  
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Then, 
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 (a.6) 

and the results for 
*
ic  are obvious ( 1,..., )i n . 

For 
*
min min 1ln{exp( ) }a k   , we have 
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      (a.7) 

For 
*( 1,..., ; min)j j N j   , as for 

*
ib , we obtain 
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It is easily confirmed that 
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However, 
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 .  (a.10) 

When 1 1inf- 0k k  , 
* * * * *
min ( 1 / [1 exp{ ( )}]i ij j ia b        when 

* *
min min 1ln{exp( ) }j a k     ) goes to zero, and consequently, min (i ijP P  

when minj   or equivalently 
* *

minj  ) goes to 
*
ic . The last result holds 

only for *
min  since 

* * *
1 1( ) ln{exp( ) } ln{exp( ) }j i i ja b ab k a k        is 

finite for ( 1,..., ; min)j j N j   . 

 

Lemma 2. Under 
* 1/2

1[var{ln( )}]aa e k   in the 1PL-G model, 
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  .      (a.11) 

Proof. Recall that *
11 / 1 / ln{exp( ) } ( 1,..., )j j jK K a k j N     and 

*
min min1 /K K . Then, as derived in Section 3 we have 
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          (a.12) 

where min min(1 ) / {exp( ) exp( )}i i ih P a ab    does not depend on 1k ; and
*

1 1var(ln ) var[ln{1 / ( )}] var{ln ( )}a aK e k e k     . 

When 1 1inf- 0k k  , we have 
*
minln K    and from Lemma 1 

*var(ln )K  . Using L’Hôpital’s rule, we obtain 
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   (a.13) 

where *
min

* *
min minlim (ln ) / 0

K
K K


  is given again by L’Hôpital’s rule. Q.E.D. 

Then, we obtain the following main result. 
 

Theorem 3. Under 
* 1/2

1[var{ln( )}]aa e k   in the 1PL-G model, 

1 1 1 1 1 1
F min* Smin* Qmin*inf- 0 inf- 0 inf- 0
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    and      (a.14) 

1 1 1 1 1 1
F* S* Q*

inf- 0 inf- 0 inf- 0
lim lim lim

k k k k k k
I I I  

     
    ,                 (a.15) 

where Smin* S *jI I  when minj   with other similar expressions defined 

similarly. 

On the other hand, when 1 1sup- 0k k  , all the values of F* S*,I I 
 

and Q*I 
 are finite and their unattained limiting values are given by 

1 1sup-k k  in 
* */ ( 1,..., ; 1,..., )i jP i n j N     of the total informations, 

and 
1

* *
sup- (k ic c  when min{ ; 1,..., }i mb b m n  ) goes to  . 

Proof. The first set of limiting zero informations (see (a.14)) is given by 
Lemma 2. For the second set of their infinite limiting values (see (a.15)), when 

1 1inf- 0k k  , it is found that 
*

1/2
1 1*

[var{ln( )}] {exp( ) }

( 1,..., ; 1,..., ; min)

ai
j i

j

P
e k a k h

i n j N j

 



  


  
          (a.16) 

go to   since 1var{ln( )}ae k     and 1exp( )ja k   is finite as ih , 

which gives the second set of infinite limiting informations. 

The results when 1 1sup- 0k k   are obviously derived since all the 

factors in 
* */i jP    are finite for this limiting case while 
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*
1 1{ exp( ) } / {exp( ) }i i i ic c ab k ab k   , when 

1

* *
sup-i kc c  goes to   

since the numerator is negative and finite and the denominator approaches +0. 
Q.E.D. 

 

A.2 The results under 
*

3 ( 0)a a k    

Next, we consider the case of parametrization with 
*

3 ( 0)a a k   , 

where 3 1k   is used without loss of generality. That is, iab  and ja  are 

redefined as ib  and j , respectively before transformation with 
1

1
0

N

jj
N 


   to remove the location indeterminacy. After 

transformation, using 
* 1a   we have 

* * 1
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       (a.17) 

*
1 1ln{exp( ) } ln( )j j k e k      with 

* 1 *

1

0
N

m
m
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( 1,..., ; 1,..., )i n j N  . 

We have two possible regions of 1k  as given in Section 2: 

1 1 1inf- min{exp( ); 1,..., } min{exp( ); 1,..., } sup-j ik j N k b i n k       , (a.18) 

and 1 1 1 1inf- min{ exp( ); 1,..., } max- <sup-i ik k c b i n k k    .          (a.19) 

Define min min{ ; 1,..., }j j N    as before with similar expressions 

defined similarly. Then, we have the following results. 
 

Theorem 4. Under 
* 1a a   and 

* 0    in the 1PL-G model, 
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  is finite, 

1 1
1 1 1 1
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sup- 0 sup- 0
lim , limk i i k

k k k k
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   is finite,               (a.20) 

1 1 1 1

* *
min ( min)

inf- 0 inf- 0
lim , lim j j

k k k k
     

     with 
1 1

*

inf- 0
lim 0

k k


 
  and         

    
1 1

*

inf- 0
var lim ( 1,..., ; 1,..., )

k k
i n j N

 
    .                           

Proof. The results are given as in Lemma 1 and Theorem 2 with 
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* 1a a   and 
* 0   . Q.E.D. 

 

Lemma 3. Under 
* 1a a   and 

* 0    in the 1PL-G model, 
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               (a.21) 

( 1,..., ; 1,..., ; min)i n j N j    are positive and finite. 
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     (a.22) 

which are obviously positive and finite by definition. Q.E.D. 
 

Theorem 5. Under 
* 1a a   and 

* 0    in the 1PL-G model, 

1 1 1 1 1 1
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  (a.24) 

are finite, where the right-hand side in each equation of (a.24) is defined to be 
given by 1 1inf-k k . 

When 1 1sup- 0k k  , all the values of F* S*,I I 
 and Q*I 

 are finite and 

their unattained limiting values are given by 1 1sup-k k  in 
* */ ( 1,..., ; 1,..., )i jP i n j N     of the total informations, and 

1

* *
sup- (k ic c  

when min{ ; 1,..., }i mb b m n  ) goes to  . 
Proof. Using Lemma 3 and the definitions of the informations, (a.23) and 

(a.24) follow. The results when 1 1sup- 0k k   are given as in Theorem 3. 
Q.E.D. 
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Recall that under 
* 1/2

1[var{ln( )}]aa e k  ,  
1 1

*

inf- 0
var lim

k k


   is finite 

while F* S*,I I 
 and Q*I 

 go to   when 1 1inf- 0k k  . To the contrary, 

under 
* 1a a  , the opposite results with infinite  

1 1

*

inf- 0
var lim

k k


   and 

finite F* S*,I I 
 and Q*I 

 when 1 1inf- 0k k   are obtained. 

 

Theorem 6. Under 
* 1a a   and 

* 0    in the 1PL-G model, 

using the possible region of (a.18) for 1k , the total informations F* S*,I I 
 and 

Q*I 
 have no maxima though their suprema are finite, which are given when 

1 1sup-k k . When the possible region of (a.19) for 1k  is used, the total 

informations have finite maxima, which are obtained by 1 1max -k k . 

Proof. Since 

*
1
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exp( ) exp( )
j iji

j j i
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b


 

 
  

  , the 

total informations are increasing functions of 1k , which gives the results 

depending on the domains of definition for 1k . Q.E.D. 
 
Corollary 2. Under the same condition as in Theorem 6 using 1max-k  in 

(a.19) for 1k , when 0ic   for at least one item, the maxima of the 
informations are already attained before transformation. 

Proof. When 0ic   for an item, 1max-k  

min{ exp( ); 1,..., }m mc b m n   becomes 0, which gives the required result. 
Q.E.D. 

Corollary 2 shows a flexibility of the model with negative 
*
ic . Even when 

0ic   for all items, the informations can further be increased. Note that in this 
case the model before transformation is the usual 1-parameter logistic or Rasch 
model. 

 


